Chapter 3 Problems

1. Let R_{j}, M_{j}, and A_{j} respectively designate the events, \{red on j th draw \}, \{mauve on j th draw $\}$, and \{attractive rainbox motif on j th draw $\}$. Because there are 4 red socks, 6 mauve ones, and 8 rainbow-colored socks(!), we have

$$
\begin{aligned}
\operatorname{Pr}\{\text { match }\} & =\operatorname{Pr}\left(R_{1} \cap R_{2}\right)+\operatorname{Pr}\left(M_{1} \cap M_{2}\right)+\operatorname{Pr}\left(A_{1} \cap A_{2}\right) \\
& =\frac{\binom{4}{2}}{\binom{18}{2}}+\frac{\binom{6}{2}}{\binom{18}{2}}+\frac{\binom{8}{2}}{\binom{18}{2}}=\frac{49}{153}
\end{aligned}
$$

5. Worked out during lectures.
6. Let $p=\operatorname{Pr}(H)$, where $H=\{$ heads $\}$, etc. Note that the probability of the event $A=$ \{number of heads $=$ the number of tails $\}$ is the same as the probability that the total number of heads is exactly n. Let \mathcal{H} denote the collection of all arrangements of n heads and n tails [try to digest this first!]. Each $B \in \mathcal{H}$ has probability $p^{n}(1-p)^{n}$. Therefore,

$$
\operatorname{Pr}(A)=|\mathcal{H}| \cdot p^{n}(1-p)^{n}=|\mathcal{H}|(p q)^{n}
$$

where $|\mathcal{H}|$ denotes the number of elements of \mathcal{H} and $q=1-p$, as usual. It should now be clear that $|\mathcal{H}|$ is the number of ways we can distribute n heads-and hence also n tails-in $2 n$ slots. Thus, $|\mathcal{H}|=\binom{2 n}{n}$. Therefore,

$$
\begin{equation*}
\operatorname{Pr}(A)=\binom{2 n}{n}(p q)^{n} \tag{1}
\end{equation*}
$$

This is the desired formula. In order to approximate this expression for large values of n, we need the Stirling formula (p. 96 of your text):

$$
\begin{equation*}
n!\sim(n / e)^{n} \sqrt{2 \pi n} \tag{2}
\end{equation*}
$$

where $a_{n} \sim b_{n}$ means $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=1$.
We apply (2) to find that

$$
\begin{aligned}
\binom{2 n}{n} & =\frac{(2 n)!}{(n!)^{2}} \sim \frac{(2 n / e)^{2 n} \sqrt{4 \pi n}}{\left\{(n / e)^{n} \sqrt{2 \pi n}\right\}^{2}}=\frac{(2 n / e)^{2 n} \sqrt{4 \pi n}}{2 \pi n \cdot(n / e)^{2 n}}=\frac{2^{2 n}}{\sqrt{\pi n}} \\
& =\frac{4^{n}}{\sqrt{\pi n}}
\end{aligned}
$$

Plug this into (1) to find that

$$
\operatorname{Pr}(A) \sim \frac{(4 p q)^{n}}{\sqrt{\pi n}} \quad \text { as } n \rightarrow \infty
$$

An interesting feature of this is that when $p=q=1 / 2$, then $\operatorname{Pr}(A) \sim$ $1 / \sqrt{\pi n}$ goes to zero as $n \rightarrow \infty$, but rather slowly. On the other hand,
when $p \neq q$, then $\operatorname{Pr}(A)$ goes to zero exponentially fast as $n \rightarrow \infty$. Does this make physical sense to you? [It should if you think about it for a while.]
28. (a) By the binomial theorem,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=(1+(-1))^{n}=0
$$

(b) This was worked out during the lectures.
(c) Let us write $n=2 m$, since n is even. Then, the method that led to the answer of (b) shows that

$$
\begin{aligned}
\sum_{k=0}^{m}\binom{2 m}{2 k} & =\text { the number of even-sized subsets of }\{1, \ldots, 2 m\} \\
& =\frac{1}{2} \times \text { the total number of subsets of }\{1, \ldots, 2 m\} \\
& =\frac{1}{2} \times 2^{2 m}
\end{aligned}
$$

Clearly, this is the same as 2^{n-1}.
(d) The same as (c), but now we are counting the total number of oddsized subsets of $\{1, \ldots, n\}$.

