
Chapter 3 Problems

1. Let Rj , Mj , and Aj respectively designate the events, {red on jth draw},
{mauve on jth draw}, and {attractive rainbox motif on jth draw}. Be-
cause there are 4 red socks, 6 mauve ones, and 8 rainbow-colored socks(!),
we have

Pr{match} = Pr(R1 ∩R2) + Pr(M1 ∩M2) + Pr(A1 ∩A2)

=

(
4
2

)(
18
2

) +

(
6
2

)(
18
2

) +

(
8
2

)(
18
2

) =
49
153

.

5. Worked out during lectures.

27. Let p = Pr(H), where H = {heads}, etc. Note that the probability of the
event A = {number of heads = the number of tails} is the same as the
probability that the total number of heads is exactly n. Let H denote the
collection of all arrangements of n heads and n tails [try to digest this
first!]. Each B ∈ H has probability pn(1− p)n. Therefore,

Pr(A) = |H| · pn(1− p)n = |H|(pq)n,

where |H| denotes the number of elements of H and q = 1 − p, as usual.
It should now be clear that |H| is the number of ways we can distribute n
heads—and hence also n tails—in 2n slots. Thus, |H| =

(
2n
n

)
. Therefore,

Pr(A) =
(

2n

n

)
(pq)n. (1)

This is the desired formula. In order to approximate this expression for
large values of n, we need the Stirling formula (p. 96 of your text):

n! ∼ (n/e)n
√

2πn, (2)

where an ∼ bn means limn→∞(an/bn) = 1.

We apply (2) to find that(
2n

n

)
=

(2n)!
(n!)2

∼ (2n/e)2n
√

4πn{
(n/e)n

√
2πn

}2 =
(2n/e)2n

√
4πn

2πn · (n/e)2n
=

22n

√
πn

=
4n

√
πn

.

Plug this into (1) to find that

Pr(A) ∼ (4pq)n

√
πn

as n →∞.

An interesting feature of this is that when p = q = 1/2, then Pr(A) ∼
1/
√

πn goes to zero as n → ∞, but rather slowly. On the other hand,

1



when p 6= q, then Pr(A) goes to zero exponentially fast as n → ∞. Does
this make physical sense to you? [It should if you think about it for a
while.]

28. (a) By the binomial theorem,

n∑
k=0

(−1)k

(
n

k

)
= (1 + (−1))n = 0.

(b) This was worked out during the lectures.

(c) Let us write n = 2m, since n is even. Then, the method that led to
the answer of (b) shows that

m∑
k=0

(
2m

2k

)
= the number of even-sized subsets of {1, . . . , 2m}

=
1
2
× the total number of subsets of {1, . . . , 2m}

=
1
2
× 22m.

Clearly, this is the same as 2n−1.

(d) The same as (c), but now we are counting the total number of odd-
sized subsets of {1, . . . , n}.
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