Chapter 2 Problems

1. Let W denote the event $\{$ windy $\}$ and $H=\{$ hit target $\}$. We know that:
$\operatorname{Pr}(W)=0.3 ; \operatorname{Pr}(H \mid W)=0.4 ;$ and $\operatorname{Pr}\left(H \mid W^{c}\right)=0.7$.
(a) $\operatorname{Pr}(W \cap H)=\operatorname{Pr}(H \mid W) \operatorname{Pr}(W)=0.4 \times 0.3=0.12$.
(b) By the Bayes theorem,

$$
\begin{aligned}
\operatorname{Pr}(H) & =\operatorname{Pr}(H \mid W) \operatorname{Pr}(W)+\operatorname{Pr}\left(H \mid W^{c}\right) \operatorname{Pr}\left(W^{c}\right) \\
& =(0.4 \times 0.3)+(0.7 \times 0.7) \\
& =0.61
\end{aligned}
$$

(c) Let H_{j} denote the event that she hits the target on the j th try. Then we want to know $\operatorname{Pr}\left(H_{1} \cap H_{2}^{c}\right)+\operatorname{Pr}\left(H_{1}^{c} \cap H_{2}\right)$. If her attempts are independent from one another, then this is
$\operatorname{Pr}\left(H_{1}\right) \operatorname{Pr}\left(H_{2}^{c}\right)+\operatorname{Pr}\left(H_{1}^{c}\right) \operatorname{Pr}\left(H_{2}\right)=(0.61 \times 0.39)+(0.39 \times 0.61)=0.4758$.
(d) Here, we want $\operatorname{Pr}\left(W^{c} \mid H^{c}\right)$. We can write this as

$$
\frac{\operatorname{Pr}\left(W^{c} \cap H^{c}\right)}{\operatorname{Pr}\left(H^{c}\right)}=\frac{\operatorname{Pr}\left(W^{c} \cap H^{c}\right)}{0.39}
$$

Note that

$$
\operatorname{Pr}\left(W^{c} \cap H^{c}\right)=\operatorname{Pr}\left(H^{c} \mid W^{c}\right) \operatorname{Pr}\left(W^{c}\right)=(1-0.7) \times 0.7=0.21
$$

Consequently,

$$
\operatorname{Pr}\left(W^{c} \mid H^{c}\right)=\frac{0.21}{0.39}=\frac{21}{39}=\frac{7}{13}
$$

2. (a) Because $B \subseteq A$, the intersection of A and B is B. Therefore, $\operatorname{Pr}(A \mid B)=$ $\operatorname{Pr}(B) / \operatorname{Pr}(B)=1$.
(b) If $A \subseteq B$, then $A \cap B=A$ and $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) / \operatorname{Pr}(B)$.
3. Let H denote the event $\{$ heads $\}$. We know that: $\operatorname{Pr}\left(H \mid C_{1}\right)=1 / 3 ; \operatorname{Pr}\left(H \mid C_{2}\right)=$ $2 / 3$; and $\operatorname{Pr}\left(H \mid C_{3}\right)=1$. Let us observe, using Bayes's theorem, that

$$
\begin{aligned}
\operatorname{Pr}(H) & =\operatorname{Pr}\left(H \mid C_{1}\right) \operatorname{Pr}\left(C_{1}\right)+\operatorname{Pr}\left(H \mid C_{2}\right) \operatorname{Pr}\left(C_{2}\right)+\operatorname{Pr}\left(H \mid C_{3}\right) \operatorname{Pr}\left(C_{3}\right) \\
& =\left(\frac{1}{3} \times \frac{1}{3}\right)+\left(\frac{2}{3} \times \frac{1}{3}\right)+\left(1 \times \frac{1}{3}\right)=\frac{2}{3} .
\end{aligned}
$$

- For the first portion, we are asked to compute $\operatorname{Pr}\left(C_{k} \mid H\right)$. But this is $\operatorname{Pr}\left(H \mid C_{k}\right) \operatorname{Pr}\left(C_{k}\right) / \operatorname{Pr}(H)$. Therefore,

$$
\begin{aligned}
& \operatorname{Pr}\left(C_{1} \mid H\right)=\frac{\frac{1}{3} \times \frac{1}{3}}{\frac{2}{3}}=\frac{1}{6} \\
& \operatorname{Pr}\left(C_{2} \mid H\right)=\frac{\frac{2}{3} \times \frac{1}{3}}{\frac{2}{3}}=\frac{1}{3}, \\
& \operatorname{Pr}\left(C_{3} \mid H\right)=\frac{1 \times \frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}
\end{aligned}
$$

- Let H_{j} denote the event that the j th attempt leads to heads. We are asked to compute $\operatorname{Pr}\left(H_{2} \mid H_{1}\right)$. We may observe that

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{2} \mid H_{1}\right) \\
& =\operatorname{Pr}\left(H_{2} \cap C_{1} \mid H_{1}\right)+\operatorname{Pr}\left(H_{2} \cap C_{2} \mid H_{1}\right)+\operatorname{Pr}\left(H_{2} \cap C_{3} \mid H_{1}\right) .
\end{aligned}
$$

Now:

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{2} \cap C_{1} \mid H_{1}\right)=\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{1}\right) \frac{\operatorname{Pr}\left(C_{1}\right)}{\operatorname{Pr}\left(H_{1}\right)}=\left(\frac{1}{3}\right)^{2} \frac{1 / 3}{2 / 3}=\frac{1}{18} \\
& \operatorname{Pr}\left(H_{2} \cap C_{2} \mid H_{1}\right)=\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{2}\right) \frac{\operatorname{Pr}\left(C_{2}\right)}{\operatorname{Pr}\left(H_{1}\right)}=\left(\frac{2}{3}\right)^{2} \frac{1 / 3}{2 / 3}=\frac{2}{9} \\
& \operatorname{Pr}\left(H_{2} \cap C_{3} \mid H_{1}\right)=\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{3}\right) \frac{\operatorname{Pr}\left(C_{3}\right)}{\operatorname{Pr}\left(H_{1}\right)}=(1)^{2} \frac{1 / 3}{2 / 3}=\frac{1}{2}
\end{aligned}
$$

Consequently,

$$
\operatorname{Pr}\left(H_{2} \mid H_{1}\right)=\frac{1}{18}+\frac{2}{9}+\frac{1}{2}=\frac{7}{9}
$$

- We first note that

$$
\begin{aligned}
\operatorname{Pr}\left(C_{k} \mid H_{1} \cap H_{2}\right) & =\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{k}\right) \frac{\operatorname{Pr}\left(C_{k}\right)}{\operatorname{Pr}\left(H_{1} \cap H_{2}\right)} \\
& =\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{k}\right) \frac{\operatorname{Pr}\left(C_{k}\right)}{\operatorname{Pr}\left(H_{2} \mid H_{1}\right) \operatorname{Pr}\left(H_{1}\right)} \\
& =\operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{k}\right) \frac{\frac{1}{3}}{\frac{7}{9} \times \frac{2}{3}} \\
& =\frac{9}{14} \operatorname{Pr}\left(H_{1} \cap H_{2} \mid C_{k}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Pr}\left(C_{1} \mid H_{1} \cap H_{2}\right)=\frac{9}{14}\left(\frac{1}{3}\right)^{2}=\frac{1}{14} \\
& \operatorname{Pr}\left(C_{2} \mid H_{1} \cap H_{2}\right)=\frac{9}{14}\left(\frac{2}{3}\right)^{2}=\frac{2}{7} \\
& \operatorname{Pr}\left(C_{3} \mid H_{1} \cap H_{2}\right)=\frac{9}{14}(1)^{2}=\frac{9}{14} .
\end{aligned}
$$

- We proceed as before, and write

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{3} \mid H_{1} \cap H_{2}\right) \\
& =\operatorname{Pr}\left(H_{3} \cap C_{1} \mid H_{1} \cap H_{2}\right)+\operatorname{Pr}\left(H_{3} \cap C_{2} \mid H_{1} \cap H_{2}\right) \\
& \quad+\operatorname{Pr}\left(H_{3} \cap C_{3} \mid H_{1} \cap H_{2}\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
\operatorname{Pr}\left(H_{3} \cap C_{k} \mid H_{1} \cap H_{2}\right) & =\operatorname{Pr}\left(H_{1} \cap H_{2} \cap H_{3} \mid C_{k}\right) \frac{\operatorname{Pr}\left(C_{k}\right)}{\operatorname{Pr}\left(H_{1} \cap H_{2}\right)} \\
& =\left(\operatorname{Pr}\left(H \mid C_{k}\right)\right)^{3} \frac{\frac{1}{3}}{\operatorname{Pr}\left(H_{2} \mid H_{1}\right) \operatorname{Pr}\left(H_{1}\right)} \\
& =\left(\operatorname{Pr}\left(H \mid C_{k}\right)\right)^{3} \frac{\frac{1}{3}}{\frac{7}{9} \times \frac{2}{3}} \\
& =\frac{9}{14}\left(\operatorname{Pr}\left(H \mid C_{k}\right)\right)^{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{3} \cap C_{1} \mid H_{1} \cap H_{2}\right)=\frac{9}{14} \times\left(\frac{1}{3}\right)^{3}=\frac{1}{42} \\
& \operatorname{Pr}\left(H_{3} \cap C_{2} \mid H_{1} \cap H_{2}\right)=\frac{9}{14} \times\left(\frac{2}{3}\right)^{3}=\frac{9}{21} \\
& \operatorname{Pr}\left(H_{3} \cap C_{3} \mid H_{1} \cap H_{2}\right)=\frac{9}{14} \times(1)^{3}=\frac{9}{14}
\end{aligned}
$$

Therefore,

$$
\operatorname{Pr}\left(H_{3} \mid H_{1} \cap H_{2}\right)=\frac{1}{42}+\frac{9}{21}+\frac{9}{14}=\frac{6}{7} .
$$

4. (a) $\operatorname{Pr}(A \cap A)=\operatorname{Pr}(A)$, but by independence, $\operatorname{Pr}(A \cap A)=|\operatorname{Pr}(A)|^{2}$. Therefore, $\operatorname{Pr}(A)$ is a solution to $x=x^{2}$. If $x \neq 0$, then we can divide by x to find that $x=1$. This proves that $\operatorname{Pr}(A)$ is zero or one.
(b) Because they are disjoint, $\operatorname{Pr}(A \cap B)=0$. So unless $\operatorname{Pr}(A)=0$ or $\operatorname{Pr}(B)=0$, or both are zero, A and B cannot be independent. ["If A happens, then we know that B does not; and vice versa."]
(c) Because $B=(A \cap B) \cup\left(A^{c} \cap B\right)$ is a disjoint union,

$$
\begin{aligned}
\operatorname{Pr}\left(A^{c} \cap B\right) & =\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
& =\operatorname{Pr}(B)-\operatorname{Pr}(A) \operatorname{Pr}(B) \\
& =\operatorname{Pr}(B)[1-\operatorname{Pr}(A)] \\
& =\operatorname{Pr}(B) \operatorname{Pr}\left(A^{c}\right) .
\end{aligned}
$$

Thus, A^{c} and B are independent. Similarly, $\operatorname{Pr}\left(A^{c} \cap B^{c}\right)+\operatorname{Pr}\left(A^{c} \cap\right.$ $B)=\operatorname{Pr}\left(A^{c}\right)$. Solve and apply the independence of A^{c} and B to find that

$$
\operatorname{Pr}\left(A^{c} \cap B^{c}\right)=\operatorname{Pr}\left(A^{c}\right)-\operatorname{Pr}\left(A^{c}\right) \operatorname{Pr}(B)=\operatorname{Pr}\left(A^{c}\right) \operatorname{Pr}\left(B^{c}\right)
$$

14. The probability in question is

$$
\operatorname{Pr}\left(\bigcap_{j=1}^{n} A_{j}^{c}\right)=\prod_{j=1}^{n} \operatorname{Pr}\left(A_{j}^{c}\right)=\prod_{j=1}^{n}\left(1-\operatorname{Pr}\left(A_{j}\right)\right)
$$

where $\prod_{j=1}^{n} \alpha_{j}$ denotes the product $\alpha_{1} \times \cdots \times \alpha_{n}$.
I claim that for

$$
\begin{equation*}
1-x \leq e^{-x} \quad \text { for all } x \geq 0 \tag{1}
\end{equation*}
$$

If so, then

$$
\operatorname{Pr}\left(\bigcap_{j=1}^{n} A_{j}^{c}\right) \leq \prod_{j=1}^{n} e^{-\operatorname{Pr}\left(A_{j}\right)}=e^{-\sum_{j=1}^{n} \operatorname{Pr}\left(A_{j}\right)}
$$

as desired. In order to prove (1) we apply Taylor's expansion with remainder to the function $f(x)=e^{-x}$, and find that

$$
e^{-x}=1-x+\theta^{2} \quad \text { for some } 0 \leq \theta \leq x
$$

Because $\theta^{2} \geq 0$, (1) follows.
34. Let $C=\{$ cured $\}$. Then,

$$
\operatorname{Pr}(C \mid A)=\frac{60}{200}=\frac{3}{10} \quad \text { and } \quad \operatorname{Pr}(C \mid B)=\frac{170}{1100}=\frac{17}{110}
$$

For the second part, let $M=\{$ male $\}$ and $F=\{$ female $\}$. We want to compute $\operatorname{Pr}(C \mid M \cap A), \operatorname{Pr}(C \mid M \cap B), \operatorname{Pr}(C \mid F \cap A)$, and $\operatorname{Pr}(C \mid F \cap B)$. We can see that A is "better than" B in the sense that $3 / 10=0.3$ is greater than $17 / 110=0.1 \overline{54}$.

Then, we note that

$$
\begin{aligned}
\operatorname{Pr}(C \mid M \cap A) & =\frac{50}{100}=\frac{1}{2} \\
\operatorname{Pr}(C \mid M \cap B) & =\frac{60}{100}=\frac{3}{5} \\
\operatorname{Pr}(C \mid F \cap A) & =\frac{10}{100}=\frac{1}{10} \\
\operatorname{Pr}(C \mid F \cap B) & =\frac{110}{1000}=\frac{11}{100}
\end{aligned}
$$

Now B looks "better than" A. For instance, for men, $1 / 2=0.5<3 / 5=$ 0.6 , and for women, $1 / 10=0.1<11 / 100=0.11$.

