Chapter 1 Problems

3.

(a) There are $15 \times 14=210$ different ways of selecting a pair. The number of ways that they can both be boys is $7 \times 6=42$. The number of ways that they are both girls is $8 \times 7=56$. Therefore, there are $42+56=98$ many ways in which the pair are of the same sex; $210-98=112$ many ways in which they are different. Thus,

$$
\operatorname{Pr}\{\text { different sex }\}=\frac{112}{210}=\frac{8}{15}
$$

(b) There are $15 \times 15=225$ many ways of doing this altogether. The number of ways in which the children are both boys is $7 \times 7=49$; girls is $8 \times 8=64$. Thus, there are $49+64=113$ many ways in which the sexes are the same, and $225-113=112$ many ways in which they are different. Thus,

$$
\operatorname{Pr}\{\text { different sexes }\}=\frac{112}{225}
$$

4. This was explained in lecture (Jan 19th).
5.

(a) $(A \cap B) \cup(B \cap C) \cup(A \cap B)$.
(b) $\left(A \cap B \cap C^{c}\right) \cup\left(B \cap C \cap A^{c}\right) \cup\left(A \cap B \cap C^{c}\right)$.
(c) $(A \cap B \cap C)^{c}$.
(d) $\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \cup\left(A^{c} \cap B^{c} \cap C\right)$.
9.
(b) The probability of exactly three heads is

$$
\begin{aligned}
\operatorname{Pr} & \left(H_{1} H_{2} H_{3} T_{4}\right)+\operatorname{Pr}\left(H_{1} H_{2} T_{3} H_{4}\right)+\operatorname{Pr}\left(H_{1} T_{2}\right. \\
\quad & \left.H_{3} H_{4}\right) \\
& +\operatorname{Pr}\left(T_{1} H_{2} H_{3} H_{4}\right) \\
= & \frac{1}{2^{4}}+\frac{1}{2^{4}}+\frac{1}{2^{4}}+\frac{1}{2^{4}} \\
\quad= & \frac{4}{2^{4}} \\
\quad= & \frac{1}{4}
\end{aligned}
$$

(a) The probability of exactly four heads is $1 / 2^{4}=1 / 16$. Therefore, the probability of at least three heads is

$$
\operatorname{Pr}\{\text { exactly three } \mathrm{H}\}+\operatorname{Pr}\{\text { exactly four } \mathrm{H}\}=\frac{1}{4}+\frac{1}{16}=\frac{5}{16}
$$

(c) We seek to find

$$
\operatorname{Pr}\left(H_{1} H_{2} H_{3} H_{4}\right)+\operatorname{Pr}\left(H_{1} H_{2} H_{3} T_{4}\right)+\operatorname{Pr}\left(T_{1} H_{2} H_{3} H_{4}\right)=\frac{3}{16} .
$$

12. The first portion is called the "inclusion-exclusion formula."
(a) When $n=2$, this is merely the statement that

$$
\operatorname{Pr}\left(A_{1} \cup A_{2}\right)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)-\operatorname{Pr}\left(A_{1} \cap A_{2}\right)
$$

Let's try to derive the $n=3$ case before we proceed in general.

$$
\operatorname{Pr}(A_{1} \cup \underbrace{A_{2} \cup A_{3}}_{B})=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}(B)-\operatorname{Pr}\left(A_{1} \cap B\right) .
$$

By the $n=2$ case,

$$
\operatorname{Pr}(B)=\operatorname{Pr}\left(A_{2}\right)+\operatorname{Pr}\left(A_{3}\right)-\operatorname{Pr}\left(A_{2} \cap A_{3}\right)
$$

Also, note that

$$
A_{1} \cap B=\left(A_{1} \cap A_{2}\right) \cup\left(A_{1} \cap A_{3}\right)
$$

Therefore,

$$
\operatorname{Pr}\left(A_{1} \cap B\right)=\operatorname{Pr}\left(A_{1} \cap A_{2}\right)+\operatorname{Pr}\left(A_{1} \cap A_{3}\right)-\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)
$$

Putting these together, we obtain

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup A_{3}\right)=\quad & \operatorname{Pr} \\
& \left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\operatorname{Pr}\left(A_{3}\right) \\
& -\operatorname{Pr}\left(A_{1} \cap A_{2}\right)-\operatorname{Pr}\left(A_{1} \cap A_{3}\right)-\operatorname{Pr}\left(A_{2} \cap A_{3}\right) \\
& +\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right) .
\end{aligned}
$$

This is the inclusion-exclusion formula for $n=3$.
The general case follows this very pattern. Can you fill in the gaps?
21. Note that

$$
p=\frac{x(x-1)}{(x+y)(x+y-1)} .
$$

(a) The equation $p=1 / 2$ becomes

$$
2 x(x-1)=(x+y)(x+y-1)
$$

That is,

$$
2 x^{2}-2 x=x^{2}+2 x y-x+y^{2}-y .
$$

Solve to obtain the quadratic equation,

$$
\begin{equation*}
x^{2}-x(1+2 y)-y(y-1)=0 \tag{1}
\end{equation*}
$$

If $y=1$, then this becomes $x^{2}-3 x=0$. Since $x \geq 1$ is not zero, x has to be equal to three.
Now we study the case that y is even. If $y=2$, then our equation (1) becomes

$$
x^{2}-5 x-2=0
$$

The only solutions are

$$
x=\frac{5 \pm \sqrt{25-8}}{2}
$$

neither of which is an integer. The next highest possible even y is $y=4$. In that case, (1) becomes

$$
x^{2}-9 x-12=0
$$

The only solutions are

$$
x=\frac{9 \pm \sqrt{81+48}}{2}
$$

neither of which is an integer. The next possible even y is $y=6$. In that case, (1) becomes

$$
x^{2}-13 x-30=0
$$

The solutions are

$$
x=\frac{13 \pm \sqrt{169+120}}{2}=\frac{13 \pm 17}{2}
$$

The positive solution is $x=(13+17) / 2=15$, which is also an integer. Thus, when $y=6, x=15$.
(b) and (c) Similar to (a), and equally painful.

