Solutions to Midterm \#4
 Mathematics 5010-1, Spring 2006
 Department of Mathematics, University of Utah April 7, 2006

1. A random vector (X, Y) has the following (joint) mass function $p(x, y)=P\{X=x, Y=y\}$:

$\boldsymbol{y} \backslash \boldsymbol{x}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$1 / 3$	$10 / 27$	$1 / 27$
$\mathbf{2}$	$1 / 9$	$1 / 27$	p
$\mathbf{3}$	$1 / 27$	$1 / 27$	$1 / 27$

(a) Compute p.

Solution: The table entries have to add up to one. Therefore,

$$
\begin{aligned}
1 & =\frac{1}{3}+\frac{10}{27}+\frac{1}{27}+\frac{1}{9}+\frac{1}{27}+p+\frac{1}{27}+\frac{1}{27}+\frac{1}{27} \\
& =1+p
\end{aligned}
$$

Therefore, $p=0$.
(b) Compute EX.

Solution: The easiest thing to do is to first find p_{X} [the marginal mass function of X]. This is given by "adding over the y 's:

$\boldsymbol{y} \backslash \boldsymbol{x}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$1 / 3$	$10 / 27$	$1 / 27$
$\mathbf{2}$	$1 / 9$	$1 / 27$	0
$\mathbf{3}$	$1 / 27$	$1 / 27$	$1 / 27$
$\boldsymbol{p}_{\boldsymbol{X}}(\boldsymbol{x})$	$13 / 27$	$12 / 27$	$2 / 27$

Consequently,

$$
E X=\left(1 \times \frac{13}{27}\right)+\left(2 \times \frac{12}{27}\right)+\left(3 \times \frac{2}{27}\right)=\frac{43}{27} \approx 1.593
$$

2. A random vector (X, Y) has (joint) density function

$$
f(x, y)= \begin{cases}x+y, & \text { if } 0<x<1 \text { and } 0<y<1 \\ 0, & \text { otherwise } .\end{cases}
$$

(a) Compute the conditional density of X given that $Y=1 / 2$.

Solution: First, we note that for all y between zero and one,

$$
f_{Y}(y)=\int_{0}^{1}(x+y) d x=\frac{1}{2}+y
$$

If y is not between 0 and 1 , then $f_{Y}(y)=0$. Consequently,

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{1}{2}\right.\right)= \begin{cases}x+\frac{1}{2}, & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

(b) Compute $E[X \mid Y=2]$.

Solution: This is not defined: You cannot condition on events that are not well defined.
3. (Bonus Problem) Let X_{1}, X_{2}, \ldots be independent random variables, all having the same density function f.
(a) Compute $P\left\{X_{1}<X_{2}\right\}$.

Solution: Note that $P\left\{X_{1}<X_{2}\right\}=P\left\{X_{1}>X_{2}\right\}$. [Write both probabilities out as twodimensional integrals, for instance.] Because $P\left\{X_{1}=X_{2}\right\}=0$, this implies readily that $P\left\{X_{1}<X_{2}\right\}=1 / 2$.
(b) Compute $P\left\{X_{1}<X_{2}<\ldots<X_{n}\right\}$ for an arbitrary integer $n \geq 2$.

Solution: Once again, we can note that for any permutation $i_{1}<\cdots<i_{n}$ of $1, \ldots, n$,

$$
P\left\{X_{i_{1}}<\cdots<X_{i_{n}}\right\}=P\left\{X_{1}<\cdots<X_{n}\right\}
$$

Because there are n ! distinct such permutations, $P\left\{X_{1}<\cdots<X_{n}\right\}=1 / n!$.
4. Let X and Y be independent, standard normal random variables. Recall that their common density is the function

$$
f(a)=\frac{1}{\sqrt{2 \pi}} e^{-a^{2} / 2}, \quad-\infty<a<\infty
$$

(a) Compute the (joint) density function of the random vector (X, Y).

Solution: By independence,

$$
f(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

(b) Compute the density of the random variable Z, where

$$
Z:=\sqrt{X^{2}+Y^{2}}
$$

Solution: The fastest solution that I can think of is the following:
First we compute F_{Z}. If $a \leq 0$ then $F_{Z}(a)=0$. Else, if $a>0$, then

$$
\begin{aligned}
F_{Z}(a) & =P\left\{\sqrt{X^{2}+Y^{2}} \leq a\right\}=P\left\{X^{2}+Y^{2} \leq a^{2}\right\} \\
& =\frac{1}{2 \pi} \iint_{x^{2}+y^{2} \leq a^{2}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{a} e^{-r^{2} / 2} r d r\right) d \theta \quad \text { (polar coordinates) } \\
& =1-e^{-a^{2} / 2}
\end{aligned}
$$

Then, differentiate to find that

$$
f_{Z}(a)= \begin{cases}a e^{-a^{2} / 2}, & \text { if } a \geq 0 \tag{eq.1}\\ 0, & \text { otherwise }\end{cases}
$$

Another, more straight-forward method, is this: First use the convolution formula to find $F_{X^{2}+Y^{2}}$. Next, notice that $F_{Z}(a)=F_{X^{2}+Y^{2}}\left(a^{2}\right)$. Finally, differentiate to obtain f_{Z}. We have computed $F_{X^{2}+Y^{2}}$ in the lectures. Here is a reminder: $F_{Y^{2}}(b)$ if $b \leq 0$ and if $b>0$,

$$
F_{Y^{2}}(b)=P\{-\sqrt{b} \leq Y \leq \sqrt{b}\}=\Phi(\sqrt{b})-\Phi(-\sqrt{b})=2 \Phi(\sqrt{b})-1
$$

Therefore,

$$
f_{Y^{2}}(b)=\left\{\begin{array}{ll}
2 \Phi^{\prime}(\sqrt{b}) \times \frac{1}{2 \sqrt{b}}, & \text { if } b>0, \\
0, & \text { otherwise },
\end{array}= \begin{cases}\frac{1}{\sqrt{2 \pi b}} e^{-b / 2}, & \text { if } b>0 \\
0, & \text { otherwise }\end{cases}\right.
$$

The function $f_{X^{2}}$ is the same. Therefore, $f_{X^{2}+Y^{2}}(s)=0$ if $s \leq 0$ and else if $s>0$ then

$$
\begin{aligned}
f_{X^{2}+Y^{2}}(s) & =\int_{-\infty}^{\infty} f_{X^{2}}(b) f_{Y^{2}}(s-b) d b=\frac{1}{2 \pi} \int_{0}^{s} \frac{e^{-b / 2}}{\sqrt{b}} \times \frac{e^{-(s-b) / 2}}{\sqrt{(s-b)}} d b \\
& =\frac{1}{2} e^{-s / 2}
\end{aligned}
$$

Therefore, if $b \geq 0$ then

$$
F_{X^{2}+Y^{2}}(b)=\frac{1}{2} \int_{0}^{b} e^{-s / 2} d s=1-e^{-b / 2}
$$

This leads to

$$
F_{Z}(b)=F_{X^{2}+Y^{2}}\left(b^{2}\right)=1-e^{-b^{2} / 2}
$$

We saw this already in the first part of the solution to this problem. Differentiate to obtain (eq.1) and finish.

