Solutions to Midterm \#3

Mathematics 5010-1, Spring 2006
Department of Mathematics, University of Utah

1. A continuous random variable X has density function f given by the following:

$$
f(x)= \begin{cases}C e^{-x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute C.

Solution: $1=C \int_{0}^{\infty} e^{-x} d x=C$, so $C=1$.
(b) Find $P\{X>10\}$.

Solution: $P\{X>10\}=\int_{10}^{\infty} e^{-x} d x=e^{-10} \approx 0.000045$.
2. A salesman has scheduled two appointments to see encyclopedias. His first appointment leads to a sale with probability 0.3 , and his second with probability 0.6 independently of the outcome of the first appointment. Any sale made is equally likely to be either for the deluxe model which costs $\$ 1,000$, or the standard model which costs $\$ 500$. Let X denote the total value of all the salesman's sales. Compute $E X$.
Solution: For $i=1,2$ consider the events $S_{i}:=\{$ sale on the i th appointment $\}$. We know that S_{1} and S_{2} are independent, $P\left(S_{1}\right)=0.3$, and $P\left(S_{2}\right)=0.6$. Let $D_{i}:=$ "deluxe on i th", also. We know that $P\left(D_{i} \mid S_{i}\right)=$ $P\left(D_{i}^{c} \mid S_{i}\right)=1 / 2$. Consequently, $P\left(S_{i} \cap D_{i}\right)=P\left(S_{i}\right) / 2$ and $P\left(S_{i} \cap D_{i}^{c}\right)=P\left(S_{i}\right) / 2$.
The possible values of X are:

- 2000 dollars. In this case, we have $P\{X=2000\}=P\left(S_{1} \cap D_{1}\right) P\left(S_{2} \cap D_{2}\right)=\frac{0.3}{2} \times \frac{0.6}{2}=0.045$;
- 1500 dollars. In this case, we have

$$
\begin{aligned}
P\{X=1500\} & =P\left(S_{1} \cap D_{1}\right) P\left(S_{2} \cap D_{2}^{c}\right)+P\left(S_{1} \cap D_{1}^{c}\right) P\left(S_{2} \cap D_{2}\right) \\
& =\left(\frac{0.3}{2} \times \frac{0.6}{2}\right)+\left(\frac{0.3}{2} \times \frac{0.6}{2}\right)=0.09
\end{aligned}
$$

- 1000 dollars. In this case, we have

$$
\begin{aligned}
P\{X=1000\} & =P\left(S_{1} \cap D_{1}\right) P\left(S_{2}^{c}\right)+P\left(S_{1}^{c}\right) P\left(S_{2} \cap D_{2}\right)+P\left(S_{1} \cap D_{1}^{c}\right) P\left(S_{2} \cap D_{2}^{c}\right) \\
& =\left(\frac{0.3}{2} \times 0.4\right)+\left(0.7 \times \frac{0.6}{2}\right)+\left(\frac{0.3}{2}+\frac{0.6}{2}\right)=0.315
\end{aligned}
$$

- 500 dollars. In this case, we have

$$
\begin{aligned}
P\{X=500\} & =P\left(S_{1} \cap D_{1}^{c}\right) P\left(S_{2}^{c}\right)+P\left(S_{1}^{c}\right) P\left(S_{2} \cap D_{2}^{c}\right) \\
& =\left(\frac{0.3}{2} \times 0.4\right)+\left(0.7 \times \frac{0.6}{2}\right)=0.27
\end{aligned}
$$

- 0 dollars. In this case, we have $P\{X=500\}=P\left(S_{1}^{c}\right) P\left(S_{2}^{c}\right)=0.7 \times 0.4=0.28$.

Therefore,

$$
E X=(2000 \times 0.045)+(1500 \times 0.09)+(1000 \times 0.315)+(500 \times 0.27)=675 \text { dollars }
$$

3. Suppose X is a uniform $(0,1)$ random variable. Then compute $E\left[X^{n}\right]$ for any integer $n \geq 1$.

Solution: Evidently, $E\left[X^{n}\right]=\int_{0}^{1} x^{n} d x=1 /(n+1)$.
4. Suppose X is normally distributed with $\mu=1$ and $\sigma^{2}=4$. Then compute $P\{X \geq 0\}$.

Solution: Let Φ denote the standard-normal distribution function. Then, by standardization,

$$
P\{X<0\}=\Phi\left(\frac{0-1}{2}\right)=\Phi(-0.5)=1-\Phi(0.5)
$$

Therefore, $P\{X \geq 0\}=\Phi(0.5) \approx 0.6915$, thanks to the normal table.
5. Let X be a random variable with density function

$$
f(x)= \begin{cases}\frac{3}{x^{4}}, & \text { if } x>1 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the mean and variance of X.
Solution: We have

$$
\begin{aligned}
E X & =\int_{1}^{\infty} \frac{3}{x^{3}} d x=\frac{3}{2} \\
E\left[X^{2}\right] & =\int_{1}^{\infty} \frac{3}{x^{2}} d x=3 \\
\operatorname{Var} X & =E\left[X^{2}\right]-(E X)^{2}=3-\left(\frac{3}{2}\right)^{2}=\frac{3}{4}
\end{aligned}
$$

