Solutions to Midterm \#2
Mathematics 5010-1, Spring 2006
Department of Mathematics, University of Utah

1. An urn contains R red balls and W white balls, where R and W are strictly positive integers. Balls are drawn at random one after another. Every time a ball is drawn, it is replaced back in the urn together with N new balls of the same color.
(a) Compute the probability that a red ball is drawn on the first draw.

Solution: $\quad R /(R+W)$.
(b) Compute the probability that a red ball is drawn on the second draw.

Solution: Define $R_{i}:=\{$ red on the i th draw $\}$, and $W_{i}:=\{$ white on the i th draw $\}$. Then, according to Bayes' formula,

$$
\begin{aligned}
P\left(R_{2}\right) & =P\left(R_{2} \mid R_{1}\right) P\left(R_{1}\right)+P\left(R_{2} \mid W_{1}\right) P\left(W_{1}\right) \\
& =\frac{R+N}{R+W+N} \cdot \frac{R}{R+W}+\frac{R}{R+W+N} \cdot \frac{W}{R+W} \\
& =\frac{R}{(R+W+N)(R+W)} \cdot(R+N+W) \\
& =\frac{R}{R+W} .
\end{aligned}
$$

2. In a certain town, 60 percent of all property owners oppose an increase in the property tax while 80 percent of non-property owners favor it. If 65 percent of all registered voters are property owners, then what proportion of registered voters favor the tax increase?

Solution: Let $O:=\{$ property owner $\}$ and $F:=\{$ favor tax increase $\}$. Then, $P(O)=0.65$, $P\left(F^{c} \mid O\right)=0.6$, and $P\left(F \mid O^{c}\right)=0.8$. Thus,

$$
P(F)=\underbrace{P(F \mid O)}_{0.4} \underbrace{P(O)}_{0.65}+\underbrace{P\left(F \mid O^{c}\right)}_{0.8} \underbrace{P\left(O^{c}\right)}_{0.35}=0.54 .
$$

3. A pair of fair dice are cast, and the number of rolled dots, on each die, is recorded. Let X denote the maximum of the two numbers. Find the probability mass function of X.

Solution: Let $P(i, j)$ be the probability that first we roll an i, and then a j. Of course,

$$
\begin{aligned}
& P(i, j)=1 / 36 \text { for all } i, j=1, \ldots, 6 . \text { Then, } \\
& P\{M=1\}=P(1,1)=\frac{1}{36} \\
& P\{M=2\}=P(1,2)+P(2,1)+P(2,2)=\frac{3}{36} \\
& P\{M=3\}=P(1,3)+P(3,1)+P(2,3)+P(3,2)+P(3,3)=\frac{5}{36} \\
& P\{M=4\}=P(1,4)+\cdots+P(4,4)=\frac{7}{36} \\
& P\{M=5\}=P(1,5)+\cdots+P(5,5)=\frac{9}{36} \\
& P\{M=6\}=P(1,6)+\cdots+P(6,6)=\frac{11}{36} .
\end{aligned}
$$

4. A fair coin is cast until the first head appears. Let N denote the number of tosses needed to see the first head.
(a) Find the probability mass function of N.

Solution: For all $k=1,2, \ldots$,

$$
P\{N=k\}=\frac{1}{2^{k}} .
$$

For all other values of $k, P\{N=k\}=0$.
(b) Compute $P\{3 \leq N<8\}$.

Solution: We want

$$
\begin{aligned}
P\{3 \leq N<8\} & =P\{M=3\}+\cdots+P\{M=7\} \\
& =\frac{1}{2^{3}}+\cdots+\frac{1}{2^{7}}
\end{aligned}
$$

5. Here is the simplest mathematical model for the evolution of the price of a commodity: At time zero, the value is zero. Then at every time-step $(n=1,2, \cdots)$, the stockprice goes up or down by one unit with probability $1 / 2$. If all stock movements are independent of one another, then compute the probability that the value is zero at time $2 n$.
Solution: Let U denote the number of times that the stock value goes up in $2 n$ timesteps, and D the number of corresponding downs. Note that: (i) $D=2 n-U$; and (ii) we are at zero at time n if and only if $D=U$. Therefore, we seek the probability $P\{2 n-U=U\}=P\{U=n\}$. This is a binomial probability: $P\{U=n\}=\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n}$.
