1. An urn contains R red balls and W white balls, where R and W are strictly positive integers. Balls are drawn at random one after another. Every time a ball is drawn, it is replaced back in the urn together with N new balls of the same color.

(a) Compute the probability that a red ball is drawn on the first draw.

Solution: \[\frac{R}{R+W}. \]

(b) Compute the probability that a red ball is drawn on the second draw.

Solution: Define $R_i := \{\text{red on the } i\text{th draw}\}$, and $W_i := \{\text{white on the } i\text{th draw}\}$. Then, according to Bayes’ formula,

\[
P(R_2) = P(R_2|R_1)P(R_1) + P(R_2|W_1)P(W_1)
\]

\[
= \frac{R+N}{R+W+N} \cdot \frac{R}{R+W} + \frac{R}{R+W+N} \cdot \frac{W}{R+W}
\]

\[
= \frac{R}{(R+W+N)(R+W)} \cdot (R+N+W)
\]

\[
= \frac{R}{R+W}.
\]

2. In a certain town, 60 percent of all property owners oppose an increase in the property tax while 80 percent of non-property owners favor it. If 65 percent of all registered voters are property owners, then what proportion of registered voters favor the tax increase?

Solution: Let $O := \{\text{property owner}\}$ and $F := \{\text{favor tax increase}\}$. Then, $P(O) = 0.65$, $P(F^c|O) = 0.6$, and $P(F|O^c) = 0.8$. Thus,

\[
P(F) = P(F|O)P(O) + P(F|O^c)P(O^c) = 0.54.
\]

3. A pair of fair dice are cast, and the number of rolled dots, on each die, is recorded. Let X denote the maximum of the two numbers. Find the probability mass function of X.

Solution: Let $P(i,j)$ be the probability that first we roll an i, and then a j. Of course,
\[P(i, j) = 1/36 \text{ for all } i, j = 1, \ldots, 6. \] Then,

\[
\begin{align*}
P(M = 1) &= P(1, 1) = \frac{1}{36} \\
P(M = 2) &= P(1, 2) + P(2, 1) + P(2, 2) = \frac{3}{36} \\
P(M = 3) &= P(1, 3) + P(3, 1) + P(2, 3) + P(3, 2) + P(3, 3) = \frac{5}{36} \\
P(M = 4) &= P(1, 4) + \cdots + P(4, 4) = \frac{7}{36} \\
P(M = 5) &= P(1, 5) + \cdots + P(5, 5) = \frac{9}{36} \\
P(M = 6) &= P(1, 6) + \cdots + P(6, 6) = \frac{11}{36}.
\]

4. A fair coin is cast until the first head appears. Let \(N \) denote the number of tosses needed to see the first head.

(a) Find the probability mass function of \(N \).

Solution: For all \(k = 1, 2, \ldots \),

\[P\{N = k\} = \frac{1}{2^k}. \]

For all other values of \(k \), \(P\{N = k\} = 0 \).

(b) Compute \(P\{3 \leq N < 8\} \).

Solution: We want

\[
P\{3 \leq N < 8\} = P\{M = 3\} + \cdots + P\{M = 7\} = \frac{1}{2^3} + \cdots + \frac{1}{2^7}.
\]

5. Here is the simplest mathematical model for the evolution of the price of a commodity: At time zero, the value is zero. Then at every time-step \((n = 1, 2, \ldots) \), the stock-price goes up or down by one unit with probability \(1/2 \). If all stock movements are independent of one another, then compute the probability that the value is zero at time \(2n \).

Solution: Let \(U \) denote the number of times that the stock value goes up in \(2n \) time-steps, and \(D \) the number of corresponding downs. Note that: (i) \(D = 2n - U \); and (ii) we are at zero at time \(n \) if and only if \(D = U \). Therefore, we seek the probability \(P\{2n - U = U\} = P\{U = n\} \). This is a binomial probability:

\[P\{U = n\} = \binom{2n}{n} \left(\frac{1}{2}\right)^{2n}. \]