Math 5010-1, Fall 2006 Solutions to the Final Examination

1. Compute the mass function of the random variable Y whose moment generating function is

$$
M_{Y}(t)=\frac{1}{2} e^{t}+\frac{1}{6} e^{-2 t}+\frac{1}{3} e^{5 t}
$$

Solution: $p(1)=1 / 2, p(-2)=1 / 6, p(5)=1 / 3$, and $p(x)=0$ otherwise.
2. Consider a random vector (X, Y). We know that X is exponentially distributed with parameter 1; i.e.,

$$
f_{X}(x)= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Let $x>0$ be any fixed positive number, and suppose that conditionally on the event $\{X=x\}$, Y is exponentially distributed with parameter $1 / x$. That is,

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} e^{-y / x}, \quad y \geq 0, \\ 0, & \text { otherwise }\end{cases}
$$

Find the density function of $\left(X^{2}, Y^{2}\right)$.
Solution: The joint density of (X, Y) is

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)= \begin{cases}\frac{e^{-x-(y / x)}}{x}, & \text { if } x, y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=g_{1}(X, Y)=X^{2}$ and $V=g_{2}(X, Y)=Y^{2}$. The Jacobian of the transformation g is $4 x y$. Therefore,

$$
f_{U, V}(u, v)=\frac{f_{X, Y}(x, y)}{4 x y}= \begin{cases}\frac{e^{-\sqrt{u}-(\sqrt{v} / \sqrt{u})}}{4 u \sqrt{v}}, & \text { if } u, v \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

3. You have 4 light bulbs whose lifetimes are independent normal random variables with mean 100 (hours) and standard deviation 5 (hours). Find the probability that your 4 light bulbs together live for at least 402 hours.
Solution: Let X_{i} denote the lifetime of the i th light bulb. Then X_{i} is $N(100,25)$ for each i. Therefore, by independence, $X_{1}+\cdots+X_{4}$ is $N(400,100)$. Thus,

$$
P\left\{X_{1}+\cdots+X_{4} \geq 402\right\}=P\left\{N(0,1) \geq \frac{402-400}{\sqrt{100}}\right\} \approx P\{N(0,1) \geq 0.2\} \approx 0.4207
$$

4. Suppose X_{1}, X_{2}, X_{3} and X_{4} are independent with common mean 1 and common variance 2. Compute $\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right)$.
Solution: The covariance is equal to

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)=0+0+2+0=2
$$

5. Let $X_{1}, X_{2}, \ldots, X_{20}$ be independent Poisson random variables with mean one. Use the central limit theorem to approximate $P\left\{\sum_{i=1}^{20} X_{i}>15\right\}$.
Solution: The expectation of each X_{i} is 1 , and so is the variance. Therefore, $E\left(\sum_{i=1}^{20} X_{i}\right)=20$, and so is the variance. If we apply the CLT, then

$$
P\left\{\sum_{i=1}^{20} X_{i}>15\right\} \approx P\{N(20,20)>15\}=P\left\{N(0,1)>\frac{15-20}{\sqrt{20}}\right\} \approx P\{N(0,1)>-1.1\}
$$

This is $1-\Phi(-1.1)=\Phi(1.1) \approx 0.8643$.

