Math 5010-1, Fall 2006 Practice-Final Examination

1. Let $X_{1}, X_{2}, \ldots, X_{20}$ be independent Poisson random variables with mean one.
(a) Compute $\operatorname{Var}\left(X_{1}\right)$.
(b) Use the preceding and the central limit theorem to approximate $P\left\{\sum_{i=1}^{20} X_{i}>15\right\}$. If you did not attempt part (a), you can answer this part by assuming that $\operatorname{Var}\left(X_{1}\right)=3$. Otherwise, you must use your answer to part (a) in order to merit partial credit.
2. A point (X, Y) is chosen at random according to the following (joint) probability mass function:

(a) Compute the mass function of $W=X Y$.
(b) Compute $P\{X>Y\}$.
3. Suppose X and Y are independent, both distributed uniformly on $[0,1]$. Then prove that

$$
E\left(|X-Y|^{\alpha}\right)=\frac{2}{(\alpha+1)(\alpha+2)} \quad \text { for } \alpha>0
$$

4. A fair die is cast ten times, and the total number of rolled dots is summed up; call this sum X. Find $E[X]$.
5. If X and Y are independent and identically distributed with $\mu=E[X]$ and $\sigma^{2}=\operatorname{Var}(X)$, then compute $E\left[(X-Y)^{2}\right]$.
6. (a) Compute the moment generating function of a random variable X whose mass function is as follows:

$$
p(0)=\frac{1}{3}, \quad p(2)=\frac{1}{6}, \quad p(-1)=\frac{1}{2} .
$$

(b) Suppose Y is a random variable whose moment generating function is

$$
M_{Y}(t)=\frac{1}{2} e^{t}+\frac{1}{6} e^{-2 t}+\frac{1}{3} e^{5 t}
$$

Compute the mass function of Y.
7. The density function of X is given by

$$
f(x)=a+b x^{2} \quad 0 \leq x \leq 1
$$

If $E[X]=3 / 5$ then find a and b.
8. Let $X_{1}, X_{2}, \ldots, X_{20}$ be independent random variable, all uniformly distributed on $(0,1)$.
(a) Compute the mean μ and variance σ^{2} of the X_{j} 's.
(b) Use the central limit theorem to approximate the probability that $X_{1}+\cdots+X_{20}$ remains between 8.5 and 11.7.
9. You have 4 light bulbs whose lifetimes are independent normal random variables with mean 100 (hours) and standard deviation 5 (hours). Find the probability that your 4 light bulbs together live for at least 402 hours.
10. Consider a random vector (X, Y). We know that X is exponentially distributed with parameter 1; i.e.,

$$
f_{X}(x)= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Let $x>0$ be any fixed positive number, and suppose that conditionally on the event $\{X=x\}, Y$ is exponentially distributed with parameter $1 / x$. That is,

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} e^{-y / x}, & y \geq 0, \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute the density function of $(X,, Y)$.
(b) Compute the expected value of Y.
(c) What is $P\{Y>X\}$?
(d) Find the density function of $\left(X^{2}, Y^{2}\right)$.
[To answer this problem you will need to read Section 6.7, page 300-208, ed. 7, and with care. This reading is mandatory for the final-exam preparation.]
11. Suppose X_{1}, X_{2}, X_{3} and X_{4} are independent with common mean 1 and common variance 2. Compute $\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right)$.
12. Let X denote a random variable with the following probability mass function.

$$
p(j)=2^{-j}, \quad j=1,2, \ldots
$$

(a) Compute the moment generating function of X. (Hint: You may use the fact that $\sum_{j=0}^{\infty} r^{j}=$ $1 /(1-r)$ for $0<r<1$.)
(b) Use your answer to part (a) to compute the expectation of X.
13. A point (X, Y) is picked at random, uniformly from the square whose corners are at $(0,0),(1,0)$, $(0,1)$ and $(1,1)$.
(a) $\operatorname{Compute} \operatorname{Cov}(X, Y)$.
(b) Compute $P\left\{Y>\frac{3}{2}+X\right\}$.
14. A pair of fair dice are cast independently from one another. If you are told that the total sum of the dots is 10 , find the probability that the first die was 6 .

