Reading and Problem Assignment \#9
 Math 501-1, Spring 2006
 University of Utah

Read Chapter 7, sections 7.1-7.4, and review conditional expectation by reading through section 7.5 (edition 7).

The following are mainly borrowed from your text.

Problems:

1. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads then she wins twice, and if tails, then one-half of the value that appears on the die. Determine her expected winnings.
2. If X and Y are independent uniform- $(0,1)$ random variables, then prove that

$$
E\left(|X-Y|^{\alpha}\right)=\frac{2}{(\alpha+1)(\alpha+2)} \quad \text { for all } \alpha>0
$$

3. A group of n men and n women are lined up at random.
(a) Find the expected number of men who have a woman next to them.
(b) Repeat part (a), but now assume that the group is randomly seated at a round table.
4. Let X_{1}, X_{2}, \ldots be independent with common mean μ and common variance σ^{2}. Set

$$
Y_{n}=X_{n}+X_{n+1}+X_{n+2} \quad \text { for all } n \geq 1
$$

Compute $\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right)$ for all $n \geq 1$ and $j \geq 0$.

Theoretical Problems:

1. Suppose X is a nonnegative random variable with density function f. Prove that

$$
\begin{equation*}
E(X)=\int_{0}^{\infty} P\{X>t\} d t \tag{eq.1}
\end{equation*}
$$

Is this still true when $P\{X<0\}>0$? If "yes," then prove it. If "no," then construct an example.
2. (Hard) Suppose X_{1}, \ldots, X_{n} are independent, and have the same distribution. Then, compute $\phi(x)$ for all x, where

$$
\phi(x):=E\left[X_{1} \mid X_{1}+\cdots+X_{n}=x\right] .
$$

