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Read Chapter 7, sections 7.1–7.4, and review conditional expectation by reading
through section 7.5 (edition 7).

The following are mainly borrowed from your text.

Problems:

1. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads
then she wins twice, and if tails, then one-half of the value that appears on the die.
Determine her expected winnings.

2. If X and Y are independent uniform-(0 , 1) random variables, then prove that

E (|X − Y |α) =
2

(α + 1)(α + 2)
for all α > 0.

3. A group of n men and n women are lined up at random.
(a) Find the expected number of men who have a woman next to them.
(b) Repeat part (a), but now assume that the group is randomly seated at a round

table.

4. Let X1, X2, . . . be independent with common mean µ and common variance σ2. Set

Yn = Xn + Xn+1 + Xn+2 for all n ≥ 1.

Compute Cov(Yn , Yn+j) for all n ≥ 1 and j ≥ 0.

Theoretical Problems:

1. Suppose X is a nonnegative random variable with density function f . Prove that

E(X) =
∫ ∞

0

P{X > t} dt. (eq.1)

Is this still true when P{X < 0} > 0? If “yes,” then prove it. If “no,” then construct
an example.

2. (Hard) Suppose X1, . . . , Xn are independent, and have the same distribution. Then,
compute φ(x) for all x, where

φ(x) := E [X1 | X1 + · · · + Xn = x] .


