Reading and Problem Assignment \#8
 Math 501-1, Spring 2006
 University of Utah

Read sections 6.1-6.5 of Chapter 6 (edition 7). This is where the midterm material ends. So it may pay to get started early.

The following are borrowed from your text.

Problems:

1. A man and a woman agree to meet at a certain location at about $12: 30 \mathrm{p} . \mathrm{m}$. If the man arrives at a time uniformly distributed between $12: 15$ and $12: 45$, and if the woman independently arrives at a time uniformly distributed between 12:00 and 1 p.m., then find the probability that the first to arrive waits longer than 7 minutes. What is the probability that the man arrives first?
2. When a current I (in amperes) flows through a resistance R (in ohms), the power generated is given by $W=I^{2} R$ (in watts). Suppose that I and R are independent random variables with densities

$$
\begin{aligned}
f_{I}(x) & =6 x(1-x) & & 0 \leq x \leq 1, \\
f_{R}(x) & =2 x & & 0 \leq x \leq 1 .
\end{aligned}
$$

Then find the density of W. Use this to compute $E W$.
3. Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let X_{i} equal 1 if the i th ball selected is white, and let X_{i} equal 0 otherwise. Compute the conditional probability mass function of X_{1} given that $X_{2}=1$. Use this to find $E\left[X_{1} \mid X_{2}=1\right]$.
4. The density of (X, Y) is

$$
f(x, y)= \begin{cases}x e^{-x(y+1)}, & \text { if } x>0 \text { and } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the conditional density of X, given $Y=y$. Use this to compute $E[X \mid Y=y]$.
(b) Find the conditional density of Y, given $X=x$. Use this conditional density to compute $E[Y \mid X=x]$.
(c) Find the density of $Z=X Y$. Use this to compute $E[Z]$ and $\operatorname{Var}(Z)$.

Theoretical Problems:

1. Suppose X is exponentially distributed with paramater $\lambda>0$. Find

$$
P\{[X]=n, X-[X] \leq x\},
$$

where $[a]$ denotes the largest integer $\leq a$. Are X and $X-[X]$ independent?
2. Suppose X and Y are independent, standard normal random variables. Prove that $Z:=X / Y$ has the Cauchy density. That is, prove that the density of Z is

$$
f_{Z}(a)=\frac{1}{\pi\left(1+a^{2}\right)}, \quad-\infty<a<\infty .
$$

(Hint: Consider first $P\{X \leq t Y\}$.)
3. Suppose X is a standard normal random variable. Compute the density of $Y=X^{2}$. [The resulting density is called the chi-squared distribution with one degree of freedom. It is sometimes also written as χ_{1}^{2}. Warning: "chi" is read as "kye," and not "chai."]

