Reading and Problem Assignment \#7
 Math 501-1, Spring 2006
 University of Utah

Read the section on "The distribution of a function of a random variable" in Chapter 5. (Section 5.7 in edition 7). Also start reading sections 6.1-6.2 of Chapter 6 (jointly distributed random variables; edition 7).

The following are borrowed from your text.

Problems:

1. Suppose Y is uniformly distributed on $(0,5)$. What is the probability that the roots of the equation $4 x^{2}+4 x Y+Y+2=0$ are both real?
2. Two fair dice are rolled. Find the joint mass function of (X, Y) when:
(a) X is the maximum (i.e., largest) of the values of the two dice, and Y is the sum of the values of the two dice;
(b) X is the value of the first die and Y is the maximum of the values of the two dice;
(c) X is the minimum (i.e., smallest) of the values of the two dice, and Y is the maximum of the two values.
3. Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X_{1} denote the number of failures preceding the first success, and let X_{2} be the number of failures between the first two successes. Find the joint mass function of $\left(X_{1}, X_{2}\right)$.
4. The joint density function of (X, Y) is given by

$$
f(x, y)= \begin{cases}c\left(y^{2}-x^{2}\right) e^{-y}, & \text { if }-y \leq x \leq y \text { and } 0<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find c.
(b) Find the (marginal) density functions of X and Y respectively.
(c) Find $E(X)$.
(d) Find $P\{X>Y\}$.
5. The (joint) density function of (X, Y) is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & \text { if } 0 \leq x<\infty, \text { and } 0 \leq y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Find: (a) $P\{X<Y\}$; and (b) $P\{X<a\}$ for all real numbers a.

