Reading and Problem Assignment \#6
 Math 501-1, Spring 2006
 University of Utah

Midterm preparation. Read all of Chapter 5 (continuous random variables) except the section, "The distribution of a function of a random variable."

The following are borrowed from your text.

Problems:

1. Let X be a random variable with density function

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is c ?
(b) Compute the distribution function F.
(c) Calculate $P\{0<X<1.5\}$.
(d) Compute $E X$ and $\operatorname{Var} X$.
2. Suppose X is normally distributed with mean $\mu=10$ and variance $\sigma^{2}=36$. Compute:
(a) $P\{X>5\}$.
(b) $P\{4<X<16\}$.
3. Let X be uniformly distributed on $[0,1]$. Then compute $E\left[X^{n}\right]$ for all integers $n \geq 1$. What happens if $n=-1$?
4. The density function of X is

$$
f(x)= \begin{cases}a+b x^{2} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We know that $E X=\frac{3}{5}$. Compute a and b.

Theoretical Problems:

1. Let X have the exponential (λ) distribution, where $\lambda>0$ is fixed. That is, we suppose that the density function of X is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that for all integers $k \geq 1$,

$$
E\left[X^{k}\right]=\frac{k!}{\lambda^{k}}
$$

(Hint: Use gamma functions.)
2. Let X have the exponential (λ) distribution, where $\lambda>0$ is fixed. Then, compute $P(X>x+y \mid X>y)$ for all $x, y>0$. Use this to prove that for all $x, y>0$,

$$
P(X>x+y \mid X>y)=P\{X>x\} .
$$

This property is called "memoryless-ness."

