Reading and Problem Assignment \#5
 Math 501-1, Spring 2006
 University of Utah

Read Chapter 4 (expectations). Start reading Chapter 5 (continuous random variables).

The following are borrowed from your text.

Problems:

1. A gambling book recommends the following "winnin strategy" for the game of roulette: It recommends that the gambler bet $\$ 1$ on red. If red appears (this has probability $18 / 38$), then the gambler should take her $\$ 1$ profit and quit. Else, she should make additional $\$ 1$ bets on red on each of the next two spins of the roulette wheel, and then quit. Let X denote the gambler's winnings when she quits.
(a) Find $P\{X>0\}$.
(b) Are you convinced that the strategy is indeed a "winning" strategy? Explain your answer.
(c) Compute EX.
2. One of the numbers 1 through 10 is chosen at random. You are to try and guess the number chosen by asking questions with "yes-no" answers. Compute the expected number of questions that you need to ask in each of the following two cases:
(a) Your i th question is to be, "Is it i ?", for $i=1, \ldots, 10$.
(b) With each question you try to eliminate one-half of the remaining numbers, as nearly as possible. [E.g., "Is it greater than or equal to 5?", etc.]
3. A person tosses a fair coin until a tail appears for the first time. If "tail" appears on the nth flip, then the person wins 2^{n} dollars. Let X denote the person's winnings. Show that $E X=\infty$. This is known as the "St.-Petersbourg paradox."
4. A box contains 5 red and 5 blue marbles. Two marbles are withdrawn randomly. If they are the same color, then you win $\$ 1.10$; if they are different colors, then you win - $\$ 1.00$ (i.e., you lose one dollar). Compute:
(a) the expected value of the amount you win;
(b) the variance of the amount you win.

Theoretical Problems:

1. Let X be such that $P\{X=1\}=p$ and $P\{X=-1\}=1-p$. Find a constant $c \neq 1$ such that $E\left[c^{X}\right]=1$.
2. Prove that if X is a Poisson random variable with parameter λ, then for all $n \geq 1$,

$$
E\left[X^{n}\right]=\lambda E\left[(X+1)^{n-1}\right] .
$$

Use this to compute $E X, E\left[X^{2}\right], \operatorname{Var} X$, and $E\left[X^{3}\right]$.

