Reading and Problem Assignment \#2
 Math 501-1, Spring 2006
 University of Utah

Read chapter 2 (axiomatic probability). Skip the starred sections. Continue reading chapter 1, as well.

The following are borrowed from your text.

Problems:

1. Consider n-digit numbers where each digit is one of the 10 integers $0,1, \ldots, 9$. How many such numbers are there for which:
(a) No two consecutive digits are equal?
(b) 0 appears as a digit a total of i times, $i=0, \ldots, n$?
2. A student is to answer 7 out of 10 questions in an examination. How many choices has she? How many if she must answer at least 3 of the first 5 questions?
3. If 8 new teachers are to divided among 4 schools, then how many divisions are possible? What if each school must receive at least 2 new teachers?
4. If all $\binom{52}{5}$ possible poker hands are equally likely, then what is the probability of:
(a) a flush? [This is when all cards have the same suit; e.g., $A_{\boldsymbol{\mu}}, 2_{\boldsymbol{\mu}}, 5_{\boldsymbol{\mu}}, J_{\boldsymbol{\downarrow}}, K_{\boldsymbol{\mu}}$.]
(b) one pair? [This is when the cards have the denominations a, a, b, c, d, where a, b, c, and d are all distinct. E.g., $A_{\boldsymbol{\omega}}, A_{\boldsymbol{\omega}}, 2_{\boldsymbol{\omega}}, 3_{\boldsymbol{\kappa}}, Q_{\odot}$.]
(c) four of a kind? [This is when the cards have denominations a, a, a, a, b. E.g., $\left.A_{\boldsymbol{\omega}}, A_{\boldsymbol{\omega}}, A_{\odot}, A_{\diamond}, 10_{\varrho}.\right]$
