Solutionjs to Problem Assignment \#9
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads then she wins twice, and if tails, then one-half of the value that appears on the die. Determine her expected winnings.
Solution: Let $H=\{$ heads $\}$, and define N to be the number of dots on the rolled die. We know that N and H are independent. Let W denote the amount won. We know that

$$
P(W=2 N \mid H)=1 \quad \text { and } \quad P\left(W=N / 2 \mid H^{c}\right)=1
$$

Therefore,

$$
\begin{aligned}
E(W) & =E(W \mid H) P(H)+E\left(W \mid H^{c}\right) P\left(H^{c}\right) \\
& =E(2 N \mid H) P(H)+E\left(\left.\frac{N}{2} \right\rvert\, H^{c}\right) P\left(H^{c}\right) \\
& =E(2 N) P(H)+E\left(\frac{N}{2}\right) P\left(H^{c}\right)
\end{aligned}
$$

by independence. But $P(H)=P\left(H^{c}\right)=1 / 2$, and $E(N)=(1+\cdots+6) / 6=7 / 2$. Consequently,

$$
E(W)=2 E(N) P(H)+\frac{1}{2} E(N) P\left(H^{c}\right)=\frac{35}{8}=4.375 .
$$

2. If X and Y are independent uniform- $(0,1)$ random variables, then prove that

$$
E\left(|X-Y|^{\alpha}\right)=\frac{2}{(\alpha+1)(\alpha+2)} \quad \text { for all } \alpha>0
$$

Solution: The density of (X, Y) is $f(x, y)=1$ if $0 \leq x, y \leq 1 ; f(x, y)=0$, otherwise. Therefore,

$$
\begin{aligned}
E\left(|X-Y|^{\alpha}\right) & =\int_{0}^{1} \int_{0}^{1}|x-y|^{\alpha} d x d y \\
& =\int_{0}^{1} \int_{x}^{1}(y-x)^{\alpha} d y d x+\int_{0}^{1} \int_{0}^{x}(x-y)^{\alpha} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} z^{\alpha} d z d x+\int_{0}^{1} \int_{0}^{x} w^{\alpha} d w d x \\
& =\frac{1}{1+\alpha} \int_{0}^{1}(1-x)^{\alpha+1} d x+\frac{1}{1+\alpha} \int_{0}^{1} x^{\alpha+1} d x \\
& =\frac{2}{(1+\alpha)(2+\alpha)}
\end{aligned}
$$

as asserted.
3. A group of n men and n women are lined up at random.
(a) Find the expected number of men who have a woman next to them.

Solution: All $(2 n)$! possible permutations are equally likely. Now consider the events $M_{i}=\{$ person i is a man $\}$, for $i=1, \ldots, 2 n$. Clearly, $P\left(M_{i}\right)=1 / 2$ [produce the requisite combinatorial argument]. Let W_{i} denote the number of women who are neighboring person i. We can note that if $i=2, \ldots, n-1$, then

$$
\begin{aligned}
P\left(W_{i}=0 \mid M_{i}\right) & =\frac{P\left(W_{i}=0, M_{i}\right)}{P\left(M_{i}\right)}=\frac{P\left(M_{i-1} \cap M_{i} \cap M_{i+1}\right)}{1 / 2} \\
& =2 P\left(M_{i-1} \cap M_{i} \cap M_{i+1}\right)=2 \frac{\binom{n}{3}(2 n-3)!}{(2 n)!}
\end{aligned}
$$

Consequently, for $i=2, \ldots, n-1$,

$$
P\left(W_{i} \geq 1, M_{i}\right)=P\left(W_{i} \geq 1 \mid M_{i}\right) P\left(M_{i}\right)=\left(1-2 \frac{\binom{n}{3}(2 n-3)!}{(2 n)!}\right) \times \frac{1}{2}:=\mathcal{A}
$$

Similarly,

$$
P\left(W_{1} \geq 1, M_{1}\right)=P\left(W_{n} \geq 1, M_{n}\right)=\frac{n^{2}(2 n-2)!}{(2 n)!}:=\mathcal{B} .
$$

Let $I_{i}=1$ if M_{i} occurs and $W_{i} \geq 1$. Evidently, the expected number of men who have a woman next to them is $\sum_{i=1}^{n} I_{i}$. Note that $E\left(I_{i}\right)=P\left(W_{i} \geq 1, M_{i}\right)$. Therefore,

$$
\begin{aligned}
E\left(\sum_{i=1}^{2 n} I_{i}\right) & =\sum_{i=1}^{2 n} E\left(I_{i}\right) \\
& =P\left(W_{1} \geq 1, M_{1}\right)+\sum_{i=2}^{2 n-1} P\left(W_{i} \geq 1, M_{i}\right)+P\left(W_{n} \geq 1, M_{n}\right) \\
& =2 \mathcal{B}+(2 n-2) \mathcal{A} .
\end{aligned}
$$

(b) Repeat part (a), but now assume that the group is randomly seated at a round table.
Solution: The difference now is that $P\left(W_{i} \geq 1, M_{i}\right)=\mathcal{A}$ for all $i=1, \ldots, n$, so that

$$
E\left(\sum_{i=1}^{2 n} I_{i}\right)=2 n \mathcal{A}
$$

4. Let X_{1}, X_{2}, \ldots be independent with common mean μ and common variance σ^{2}. Set

$$
Y_{n}=X_{n}+X_{n+1}+X_{n+2} \quad \text { for all } n \geq 1
$$

Compute $\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right)$ for all $n \geq 1$ and $j \geq 0$.
Solution: Note that

$$
\begin{aligned}
E\left(Y_{n}\right) & =E\left(X_{n}\right)+E\left(X_{n+1}\right)+E\left(X_{n+2}\right)=3 \mu, \\
E\left(Y_{n+j}\right) & =3 \mu, \quad \text { thus, } \\
E\left(Y_{n}\right) \cdot E\left(Y_{n+j}\right) & =9 \mu^{2} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
Y_{n} & =X_{n}+X_{n+1}+X_{n+2} \\
Y_{n+j} & =X_{n+j}+X_{n+j+1}+X_{n+j+2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
Y_{n} Y_{n+j}= & X_{n} X_{n+j}+X_{n} X_{n+j+1}+X_{n} X_{n+j+2} \\
& +X_{n+1} X_{n+j}+X_{n+1} X_{n+j+1}+X_{n+1} X_{n+j+2} \\
& +X_{n+2} X_{n+j}+X_{n+2} X_{n+j+1}+X_{n+2} X_{n+j+2} .
\end{aligned}
$$

Take expectations to find that

$$
\begin{aligned}
E\left(Y_{n} Y_{n+j}\right)= & E\left(X_{n} X_{n+j}\right)+E\left(X_{n} X_{n+j+1}\right)+E\left(X_{n} X_{n+j+2}\right) \\
& +E\left(X_{n+1} X_{n+j}\right)+E\left(X_{n+1} X_{n+j+1}\right)+E\left(X_{n+1} X_{n+j+2}\right) \\
& +E\left(X_{n+2} X_{n+j}\right)+E\left(X_{n+2} X_{n+j+1}\right)+E\left(X_{n+2} X_{n+j+2}\right) .
\end{aligned}
$$

Let us work this out in separate cases, depending on the value of $j \geq 0$. First, consider the case that $j=0$. Then,

$$
\begin{aligned}
E\left(Y_{n}^{2}\right)= & E\left(X_{n}^{2}\right)+E\left(X_{n} X_{n+1}\right)+E\left(X_{n} X_{n+2}\right) \\
& +E\left(X_{n+1} X_{n}\right)+E\left(X_{n+1}^{2}\right)+E\left(X_{n+1} X_{n+2}\right) \\
& +E\left(X_{n+2} X_{n}\right)+E\left(X_{n+2} X_{n+1}\right)+E\left(X_{n+2}^{2}\right) .
\end{aligned}
$$

But $E\left(X_{n}^{2}\right)=E\left(X_{n+1}^{2}\right)=E\left(X_{n+2}^{2}\right)=\operatorname{Var}\left(X_{n}\right)+\left(E X_{n}\right)^{2}=\sigma^{2}+\mu^{2}$. Also, if $n \neq m$, then by independence $E\left(X_{n} X_{m}\right)=E\left(X_{n}\right) E\left(X_{m}\right)=\mu^{2}$. Therefore,

$$
\begin{equation*}
E\left(Y_{n}^{2}\right)=3\left(\sigma^{2}+\mu^{2}\right)+6 \mu^{2}=3 \sigma^{2}+9 \mu^{2} \tag{j=0}
\end{equation*}
$$

Next, consider the case that $j=1$. In this case,

$$
\begin{align*}
E\left(Y_{n} Y_{n+1}\right)= & E\left(X_{n} X_{n+1}\right)+E\left(X_{n} X_{n+2}\right)+E\left(X_{n} X_{n+3}\right) \\
& +E\left(X_{n+1}^{2}\right)+E\left(X_{n+1} X_{n+2}\right)+E\left(X_{n+1} X_{n+3}\right) \\
& +E\left(X_{n+2} X_{n+1}\right)+E\left(X_{n+2}^{2}\right)+E\left(X_{n+2} X_{n+3}\right) \\
= & 7 \mu^{2}+2\left(\sigma^{2}+\mu^{2}\right) \\
= & 2 \sigma^{2}+9 \mu^{2} . \tag{j=1}
\end{align*}
$$

Next we consider the case $j=2$. In this case,

$$
\begin{align*}
E\left(Y_{n} Y_{n+2}\right)= & E\left(X_{n} X_{n+2}\right)+E\left(X_{n} X_{n+3}\right)+E\left(X_{n} X_{n+4}\right) \\
& +E\left(X_{n+1} X_{n+2}\right)+E\left(X_{n+1} X_{n+3}\right)+E\left(X_{n+1} X_{n+4}\right) \\
& +E\left(X_{n+2}^{2}\right)+E\left(X_{n+2} X_{n+3}\right)+E\left(X_{n+2} X_{n+4}\right) \\
= & \sigma^{2}+9 \mu^{2} . \tag{j=2}
\end{align*}
$$

Finally, if $j \geq 3$, then

$$
E\left(Y_{n} Y_{n+j}\right)=9 \mu^{2}
$$

Theoretical Problems:

1. Suppose X is a nonnegative random variable with density function f. Prove that

$$
\begin{equation*}
E(X)=\int_{0}^{\infty} P\{X>t\} d t \tag{eq.1}
\end{equation*}
$$

Is this still true when $P\{X<0\}>0$? If "yes," then prove it. If "no," then construct an example.
Solution: The trick is to start with the right-hand side:

$$
\begin{aligned}
\int_{0}^{\infty} P\{X>t\} d t & =\int_{0}^{\infty} \int_{t}^{\infty} f(x) d x d t=\int_{0}^{\infty} \int_{0}^{x} f(x) d t d x \\
& =\int_{0}^{\infty} x f(x) d x=E(X)
\end{aligned}
$$

This cannot be true when $P\{X<0\}>0$. For instance, suppose $f(x)=\frac{1}{2}$ if $-1 \leq x \leq 1$, and $f(x)=0$ otherwise. [f is the uniform- $(-1,1)$ density.] Then, $E(X)=0$, whereas the preceding shows that $\int_{0}^{\infty} P\{X>t\} d t=\int_{0}^{\infty} x f(x) d x=$ $(1 / 2) \int_{0}^{1} x d x=(1 / 4)$.
2. (Hard) Suppose X_{1}, \ldots, X_{n} are independent, and have the same distribution. Then, compute $\phi(x)$ for all x, where

$$
\phi(x):=E\left[X_{1} \mid X_{1}+\cdots+X_{n}=x\right]
$$

Solution: Note that the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is the same as $\left(X_{2}, X_{1}, \ldots, X_{n}\right)$. Therefore, $\phi(x)=E\left[X_{2} \mid X_{1}+\cdots+X_{n}=x\right]$ as well. Similarly, $\phi(x)=E\left[X_{3} \mid X_{1}+\right.$ $\left.\cdots+X_{n}=x\right]=\cdots=E\left[X_{n} \mid X_{1}+\cdots+X_{n}=x\right]$. Add the preceding equations to find that

$$
n \phi(x)=E\left[X_{1}+\cdots+X_{n} \mid X_{1}+\cdots+X_{n}=x\right]=x
$$

Thus, $\phi(x)=(x / n)$.

