Solutions to Assignment \#8
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. A man and a woman agree to meet at a certain location at about 12:30 p.m. If the man arrives at a time uniformly distributed between 12:15 and 12:45, and if the woman independently arrives at a time uniformly distributed between 12:00 and 1 p.m., then find the probability that the first to arrive waits longer than 7 minutes. What is the probability that the man arrives first?
Solution: Let M denote the number of minutes the man arrives after 12:00. Therefore,

$$
f_{M}(m)= \begin{cases}\frac{1}{30}, & \text { if } 15 \leq m \leq 45 \\ 0, & \text { otherwise }\end{cases}
$$

Similarly, define W to be the number of minutes the woman arrives after 12:00. Thus,

$$
f_{W}(w)= \begin{cases}\frac{1}{60}, & \text { if } 0 \leq w \leq 60 \\ 0, & \text { otherwise }\end{cases}
$$

By independence,

$$
f_{M, W}(m, w)= \begin{cases}\frac{1}{1800}, & \text { if } 10 \leq m \leq 45 \text { and } 0 \leq w \leq 60 \\ 0, & \text { otherwise }\end{cases}
$$

We are interested in finding $P\{M<W-7$ or $W<M-7\}$. Now $f_{M, W}$ is zero off the rectangle $\mathcal{R}:=\{(m, w): 15 \leq m \leq 45,0 \leq w \leq 60\}$. Let \mathcal{A} denote the area, in \mathcal{R}, that is bounded between the two lines $w=m+7$ and $w=m-7$. Then,

$$
P\{M<W-7 \text { or } W<M-7\}=1-\frac{\operatorname{Area}(\mathcal{A})}{\operatorname{Area}(\mathcal{R})}=1-\frac{\operatorname{Area}(\mathcal{A})}{1800}
$$

But \mathcal{A} is a parallelopiped; so the area is base \times height. By the Pythagorean rule, $\operatorname{base}(\mathcal{A})=\sqrt{900+900}=30 \sqrt{2}$. Also, the height is described by $\sin \left(45^{\circ}\right)=$ $\operatorname{height}(\mathcal{A}) / 14$. Because $\sin \left(45^{\circ}\right)=1 / \sqrt{2}$, this yields height $(\mathcal{A})=14 / \sqrt{2}$. Therefore, $\operatorname{area}(\mathcal{A})=30 \times 14=420$, and

$$
P\{M<W-7 \text { or } W<M-7\}=1-\frac{420}{1800}=\frac{23}{30} .
$$

2. When a current I (in amperes) flows through a resistance R (in ohms), the power generated is given by $W=I^{2} R$ (in watts). Suppose that I and R are independent random variables with densities

$$
\begin{aligned}
f_{I}(x) & =6 x(1-x) & & 0 \leq x \leq 1, \\
f_{R}(x) & =2 x & & 0 \leq x \leq 1 .
\end{aligned}
$$

Then find the density of W. Use this to compute $E W$.
Solution: We have

$$
f_{I, R}(x, y)= \begin{cases}12 x y(1-x), & \text { if } 0 \leq x, y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, for all $0 \leq a \leq 1$,

$$
\begin{aligned}
F_{W}(a) & =P\{W \leq a\}=P\left\{I^{2} R \leq a\right\} \\
& =\iint_{\mathcal{R}} f_{I, R}(x, y) d x d y
\end{aligned}
$$

where \mathcal{R} is the region inside the square $(0 \leq x, y \leq 1)$ that is under the curve $y=a / x^{2}$. This region is a union of a rectangle and one bounded by a hyperbola. Therefore, for all $0 \leq a \leq 1$,

$$
\begin{aligned}
F_{W}(a) & =\int_{0}^{a} \int_{0}^{1} 12 x y(1-x) d x d y+\int_{a}^{1} \int_{0}^{\sqrt{a / y}} 12 x y(1-x) d x d y \\
& =a^{2}+6 a(1-a)-8 a^{3 / 2}\left(1-a^{1 / 2}\right) .
\end{aligned}
$$

Because $W \geq 0, F_{W}(a)=0$ if $a<0$. Also, $F_{W}(a)=1$ if $a>1$. Therefore,

$$
f_{W}(a)=F_{W}^{\prime}(a)= \begin{cases}6 a-12 \sqrt{a}+6, & \text { if } 0 \leq a \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Consequently,

$$
E W=\int_{0}^{1}\left(6 a^{2}-12 a^{3 / 2}+6 a\right) d a=-3
$$

3. Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let X_{i} equal 1 if the ith ball selected is white, and let X_{i} equal 0 otherwise. Compute the conditional probability mass function of X_{1} given that $X_{2}=1$. Use this to find $E\left[X_{1} \mid X_{2}=1\right]$.
Solution: Let W_{i} denote the event that we drew white on the i th draw. Then,

$$
P\left(X_{1}=1 \mid X_{2}=1\right)=P\left(W_{1} \mid W_{2}\right)=P\left(W_{2} \mid W_{1}\right) \frac{P\left(W_{1}\right)}{P\left(W_{2}\right)}=P\left(W_{2} \mid W_{1}\right)=\frac{1}{3}
$$

Also, $P\left(X_{1}=0 \mid X_{2}=1\right)=2 / 3$. Thus,

$$
E\left[X_{1} \mid X_{2}=1\right]=\left(1 \times P\left(X_{1}=1 \mid X_{2}=1\right)\right)+\left(0 \times P\left(X_{1}=0 \mid X_{2}=1\right)\right)=\frac{1}{3}
$$

4. The density of (X, Y) is

$$
f(x, y)= \begin{cases}x e^{-x(y+1)}, & \text { if } x>0 \text { and } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the conditional density of X, given $Y=y$. Use this to compute $E[X \mid Y=y]$.

Solution: First of all the density of Y at $y>0$ is

$$
f_{Y}(y)=\int_{0}^{\infty} x e^{-x(y+1)} d x=\frac{1}{(1+y)^{2}}
$$

If $y \leq 0$ then $f_{Y}(y)=0$. As a result, we have

$$
f_{X \mid Y}(x \mid y)=x(y+1)^{2} e^{-x(y+1)}, \quad x>0
$$

and $f_{X \mid Y}(x \mid y)=0$ for $x \leq 0$. Thus,

$$
E[X \mid Y=y]=\int_{0}^{\infty} x^{2}(y+1)^{2} e^{-x(y+1)} d x=\frac{2}{1+y}
$$

(b) Find the conditional density of Y, given $X=x$. Use this conditional density to compute $E[Y \mid X=x]$.
Solution: First of all the density of X at $x>0$ is

$$
f_{X}(x)=\int_{0}^{\infty} x e^{-x(y+1)} d y=e^{-x}
$$

If $x \leq 0$ then $f_{X}(x)=0$. As a result, we have

$$
f_{Y \mid X}(y \mid x)=x e^{-x y}, \quad y>0
$$

and $f_{Y \mid X}(y \mid x)=0$ for $y \leq 0$. Thus,

$$
E[Y \mid X=x]=\int_{0}^{\infty} x y e^{-x y} d y=\frac{1}{x}
$$

(c) Find the density of $Z=X Y$. Use this to compute $E[Z]$ and $\operatorname{Var}(Z)$.

Solution: $\quad F_{Z}(a)=0$ if $a<0$. But if $a \geq 0$ then

$$
F_{Z}(a)=P\{X Y \leq a\}=\int_{0}^{\infty} \int_{0}^{a / y} x e^{-x(y+1)} d x d y
$$

Therefore,

$$
f_{Z}(a)=\frac{d F_{Z}(a)}{d a}=\int_{0}^{\infty} \frac{d}{d a}\left(\int_{0}^{a / y} x e^{-x(y+1)} d x\right) d y
$$

By the fundamental theorem of calculus,

$$
f_{Z}(a)=\int_{0}^{\infty} \frac{a}{y^{2}} e^{-a(y+1) / y} d y=\int_{0}^{\infty} a y^{-2} e^{-a\left(1+y^{-1}\right)} d y
$$

Set $z:=y^{-1}$ to find that $d z=-y^{-2} d y$, and so

$$
f_{Z}(a)=\int_{0}^{\infty} a e^{-a(1+z)} d z=e^{-a}, \quad a>0
$$

And $f_{Z}(a)=0$ if $a \leq 0$. Therefore, Z is exponential with mean one. So $E Z=1$ and $\operatorname{Var}(Z)=1$.

Theoretical Problems:

1. Suppose X is exponentially distributed with paramater $\lambda>0$. Find

$$
P\{[X]=n, X-[X] \leq x\}
$$

where $[a]$ denotes the largest integer $\leq a$. Are X and $X-[X]$ independent?
Solution: If x is a positive number and n is a positive integer, then " $[x]=n$ " is synonymous to " $n \leq x \leq n+1$." Therefore,

$$
P\{[X]=n, X-[X] \leq x\}=P\{n \leq X \leq n+1, X \leq n+x\}
$$

There are three cases to consider: (i) If $x \geq 1$ then

$$
\begin{aligned}
P\{[X]=n, X-[X] \leq x\} & =P\{n \leq X \leq n+1\}=\int_{n}^{n+1} e^{-z} d z \\
& =e^{-n}-e^{-n-1}
\end{aligned}
$$

(ii) If $0 \leq x \leq 1$, then

$$
\begin{aligned}
P\{[X]=n, X-[X] \leq x\} & =P\{n \leq X \leq n+x\}=\int_{n}^{n+x} e^{-z} d z \\
& =e^{-n}-e^{-n-x}
\end{aligned}
$$

(iii) If $x<0$, then the probability in question is zero.

No, X and $X-[X]$ are not independent, as can be seen from the above discussion.
2. Suppose X and Y are independent, standard normal random variables. Prove that $Z:=X / Y$ has the Cauchy density. That is, prove that the density of Z is

$$
f_{Z}(a)=\frac{1}{\pi\left(1+a^{2}\right)}, \quad-\infty<a<\infty .
$$

Solution: We start, as before, and compute F_{Z} first, and then differentiate. You will need to draw the region of integration in order to follow this discussion.
We begin with the observation that

$$
\begin{equation*}
F_{Z}(a)=P\left\{\frac{X}{Y} \leq a\right\}=P\{X \leq a Y, Y \geq 0\}+P\{X \geq a Y, Y<0\} \tag{eq.0}
\end{equation*}
$$

Now,

$$
P\{X \leq a Y, Y \geq 0\}=\int_{0}^{\infty}\left(\int_{-\infty}^{a y} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x\right) \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y
$$

By the fundamental theorem of calculus, $(d / d a)\left(\int_{-\infty}^{a y} e^{-y^{2} / 2} d y\right)=y e^{-a^{2} y^{2} / 2}$. Therefore,

$$
\begin{align*}
\frac{d}{d a} P\{X \leq a Y, Y \geq 0\} & =\int_{0}^{\infty} \frac{y e^{-y^{2} a^{2} / 2}}{\sqrt{2 \pi}} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y=\frac{1}{2 \pi} \int_{0}^{\infty} y e^{-\left(1+a^{2}\right) y^{2} / 2} d y \\
& =\frac{1}{2 \pi\left(1+a^{2}\right)} \int_{0}^{\infty} e^{-z} d z \quad\left[z:=y^{2}\left(1+a^{2}\right) / 2\right] \tag{eq.1}\\
& =\frac{1}{2 \pi\left(1+a^{2}\right)}
\end{align*}
$$

Very similar computations show that

$$
\begin{equation*}
\frac{d}{d a} P\{X \geq a Y, Y<0\}=\frac{1}{2 \pi\left(1+a^{2}\right)} \tag{eq.2}
\end{equation*}
$$

Combine (eq.0), (eq.1), and (eq.2) to deduce the result.
3. Suppose X is a standard normal random variable. Compute the density of $Y=X^{2}$.

Solution: Once more, we start with the distribution function: If $a<0$ then $F_{Y}(a)=0$ because $Y \geq 0$. Else if $a \geq 0$ then

$$
F_{Y}(a)=P\{-\sqrt{a} \leq X \leq \sqrt{a}\}=\Phi(\sqrt{a})-\Phi(-\sqrt{a})
$$

But if $\alpha \geq 0$ then $\Phi(-\alpha)=1-\Phi(\alpha)$, by symmetry. Hence,

$$
F_{Y}(a)=2 \Phi(\sqrt{a})-1
$$

Differentiate to find that

$$
f_{Y}(a)=F_{Y}^{\prime}(a)=2 \Phi^{\prime}(\sqrt{a}) \times \frac{1}{2 \sqrt{a}}=\frac{e^{-a / 2}}{\sqrt{2 \pi a}}
$$

if $a>0$. Else, $f_{Y}(a)=0$.

