Solutions to Assignment \#6
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. Let X be a random variable with density function

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & \text { if }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is c ?

Solution: $\quad 1=c \int_{-1}^{1}\left(1-x^{2}\right) d x=2 c-c \int_{-1}^{1} x^{2} d x=2 c-(2 c / 3)=4 c / 3$, so $c=3 / 4$.
(b) Compute the distribution function F.

Solution: If $a>1$ then $F(a)=1$; if $a<-1$ then $F(a)=0$. For all a between ± 1, we have

$$
F(a)=\frac{3}{4} \int_{-1}^{a}\left(1-x^{2}\right) d x=\frac{3}{4}\left[a+1-\int_{-1}^{a} x^{2} d x\right]=\frac{3}{4}\left[a+1-\frac{1}{3}\left(a^{3}+1\right)\right] .
$$

(c) Calculate $P\{0<X<1.5\}$.

Solution: This is the same $P\{0<X<1\}=(3 / 4) \int_{0}^{1}\left(1-x^{2}\right) d x=1 / 2$.
(d) Compute EX and VarX.

Solution: Note that $x\left(1-x^{2}\right)$ is an odd function as x varies over $[-1,1]$. Therefore, $E X=0$. For the variance we first need $E\left(X^{2}\right)$, viz.,

$$
\begin{aligned}
E\left[X^{2}\right] & =\frac{3}{4} \int_{-1}^{1} x^{2}\left(1-x^{2}\right) d x=\frac{3}{4} \int_{-1}^{1}\left(x^{2}-x^{4}\right) d x \\
& =\frac{3}{4}\left[\frac{2}{3}-\frac{2}{5}\right]=\frac{1}{5}
\end{aligned}
$$

Therefore, $\operatorname{Var}(X)=E\left[X^{2}\right]-|E X|^{2}=(1 / 5)$.
2. Suppose X is normally distributed with mean $\mu=10$ and variance $\sigma^{2}=36$. Compute: (a) $P\{X>5\}$.

Solution: Standardize to find that

$$
P\{X \leq 5\}=\Phi\left(\frac{5-10}{6}\right)=\Phi(-0.8 \overline{3})=1-\Phi(0.8 \overline{3}) \approx 1-0.7967
$$

Therefore, $P\{X>5\} \approx 0.7967$.
(b) $P\{4<X<16\}$.

Solution: Because $P\{X=16\}=0$, we have

$$
\begin{aligned}
P\{4<X<16\} & =P\{X \leq 16\}-P\{X \leq 4\}=\Phi\left(\frac{16-10}{6}\right)-\Phi\left(\frac{4-10}{6}\right) \\
& =\Phi(1)-\Phi(-1)=2 \Phi(1)-1 \approx(2 \times 0.8413)-1=0.6826
\end{aligned}
$$

3. Let X be uniformly distributed on $[0,1]$. Then compute $E\left[X^{n}\right]$ for all integers $n \geq 1$. What happens if $n=-1$?
Solution: $\quad E\left[X^{n}\right]=\int_{0}^{1} x^{n} d x=1 /(n+1)$. If $n=-1$, then this is $\int_{0}^{1} x^{-1} d x=\infty$, so $E[1 / X]=\infty$.
4. The density function of X is

$$
f(x)= \begin{cases}a+b x^{2} & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise } .\end{cases}
$$

We know that $E X=3 / 5$. Compute a and b.
Solution: To begin with, $\int_{-\infty}^{\infty} f(x) d x=1$. So,

$$
\begin{equation*}
1=\int_{0}^{1}\left(a+b x^{2}\right) d x=a+\frac{b}{3} \tag{eq.1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\frac{3}{5}=\int_{0}^{1} x\left(a+b x^{2}\right) d x=\frac{a}{2}+\frac{b}{4} \tag{eq.2}
\end{equation*}
$$

Consider $2 \times$ (eq. 2) (eq. 1):

$$
\frac{1}{5}=\frac{b}{2}-\frac{b}{3}=\frac{b}{6}
$$

Thus, $b=\frac{6}{5}$. Also, by (eq.1), $a=1-\frac{b}{3}=1-\frac{2}{5}=\frac{3}{5}$.

Theoretical Problems:

1. Let X have the exponential (λ) distribution, where $\lambda>0$ is fixed. That is, we suppose that the density function of X is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that for all integers $k \geq 1$,

$$
E\left[X^{k}\right]=\frac{k!}{\lambda^{k}}
$$

Solution: We compute directly to find that

$$
\begin{aligned}
E\left[X^{k}\right] & =\int_{0}^{\infty} x^{k} \lambda e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{k}} \int_{0}^{\infty} y^{k} e^{-y} d y=\frac{\Gamma(k+1)}{\lambda^{k}}=\frac{k!}{\lambda^{k}} .
\end{aligned}
$$

2. Let X have the exponential (λ) distribution, where $\lambda>0$ is fixed. Then, compute $P(X>x+y \mid X>y)$ for all $x, y>0$. Use this to prove that for all $x, y>0$,

$$
P(X>x+y \mid X>y)=P\{X>x\} .
$$

This property is called "memoryless-ness."
Solution: We compute directly:

$$
P\{X>x\}=\int_{x}^{\infty} \lambda e^{-\lambda z} d z=e^{-\lambda x}, \quad \text { for all } x>0
$$

On the other hand,

$$
\begin{aligned}
P\{X>x+y \mid X>y\} & =\frac{P\{X>x+y, X>x\}}{P\{X>y\}}=\frac{P\{X>x+y\}}{P\{X>y\}} \\
& =\frac{e^{-\lambda(x+y)}}{e^{-\lambda y}}=e^{-\lambda x}, \quad \text { for all } x, y>0 .
\end{aligned}
$$

