Solutions to Problem Assignment \#5
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. A gambling book recommends the following "winnin strategy" for the game of roulette: It recommends that the gambler bet $\$ 1$ on red. If red appears (this has probability $18 / 38)$, then the gambler should take her $\$ 1$ profit and quit. Else, she should make additional $\$ 1$ bets on red on each of the next two spins of the roulette wheel, and then quit. Let X denote the gambler's winnings when she quits.
(a) Find $P\{X>0\}$.

Solution. Let R_{i} denote the event, "red on the i th trial." Because $P\left(R_{i}\right)=18 / 38$ and $P\left(R_{i}^{c}\right)=20 / 38$,

$$
P\{X=1\}=P\left(R_{1}\right)+P\left(R_{1}^{c} \cap R_{2} \cap R_{3}\right)=\frac{18}{38}+\left(\frac{20}{38} \cdot \frac{18}{38} \cdot \frac{18}{38}\right)=0.591 \overline{7}
$$

On the other hand,

$$
\begin{aligned}
P\{X=-1\} & =P\left(R_{1}^{c} \cap R_{2} \cap R_{3}^{c}\right)+P\left(R_{1}^{c} \cap R_{2}^{c} \cap R_{3}\right) \\
& =\left(\frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38}\right)+\left(\frac{20}{38} \cdot \frac{20}{38} \cdot \frac{18}{38}\right) \approx 0.2624, \\
P\{X=-3\} & =P\left(R_{1}^{c} \cap R_{2}^{c} \cap R_{3}^{c}\right)=\left(\frac{20}{38}\right)^{3} \approx 0.1458 .
\end{aligned}
$$

In particular, $P\{X>0\}=P\{X=1\}=0.591 \overline{7}$.
(b) Are you convinced that the strategy is indeed a "winning" strategy? Explain your answer.
Solution. One may think at first that this is a winning strategy because $P\{$ win $\}>0.5$. But it is the expectation that counts, and we will see next that $E X<0$. This means that the strategy is a losing strategy.
(c) Compute EX.

Solution. We have

$$
E X=0.591 \overline{7}-0.2624-(3 \times 0.1458) \approx-0.108
$$

Therefore, every time we play we expect to lose about 10 cents.
2. One of the numbers 1 through 10 is chosen at random. You are to try and guess the number chosen by asking questions with "yes-no" answers. Compute the expected number of questions that you need to ask in each of the following two cases:
(a) Your ith question is to be, "Is it i ?", for $i=1, \ldots, 10$.

Solution. Let Q denote the number of questions asked. It follows that $P\{Q=i\}=1 / 10$. Therefore,

$$
E(Q)=\frac{1}{10}+\frac{2}{10}+\cdots+\frac{10}{10}=5.5
$$

(b) With each question you try to eliminate one-half of the remaining numbers, as nearly as possible.
Solution. Consider the following strategy: Divide what you have in halves and ask, "is it greater than or equal to x ?" where x is the middle of the numbers. For instance, your first question is, "is it greater than or equal to 5.5?". [All other strategies of this type are similar. But you need to be consistent.] Let X denote the random number, so that $P\{X=i\}=1 / 10$ for $i=1, \ldots, 10$. If $X=1,2,3,6,7,8$, then $Q=3$. If $X=4,5,9,10$ then $Q=4$ (check!). Therefore, $P\{Q=3\}=P\{X=$ $1\}+P\{X=2\}+P\{X=3\}+P\{X=6\}+P\{X=7\}+P\{X=8\}=0.6$, and $P\{Q=4\}=0.4$. Thus, $E(Q)=(3 \times 0.6)+(4 \times 0.4)=3.4$.
3. A person tosses a fair coin until a tail appears for the first time. If "tail" appears on the nth flip, then the person wins 2^{n} dollars. Let X denote the person's winnings. Show that $E X=\infty$. This is known as the "St.-Petersbourg paradox."
Solution. For all $n \geq 1$,

$$
P\{X=n\}=P\left(H_{1} \cap \cdots \cap H_{n-1} \cap T_{n}\right)=\frac{1}{2^{n}}
$$

Else, $P\{X=n\}=0$. Therefore,

$$
E X=\sum_{n=1}^{\infty}\left(2^{n} \times \frac{1}{2^{n}}\right)=\infty
$$

4. A box contains 5 red and 5 blue marbles. Two marbles are withdrawn randomly. If they are the same color, then you win $\$ 1.10$; if they are different colors, then you win - $\$ 1.00$ (i.e., you lose one dollar). Compute:
(a) the expected value of the amount you win;

Solution. Let R_{i} denote the event, "red on i th draw." Then, $P\left(R_{1} \cap R_{2}\right)=(5 / 10)(4 / 9)$ and $P\left(R_{1}^{c} \cap R_{2}^{c}\right)=(5 / 10)(4 / 9)$. Let X denote the win, where $X<0$ means loss. Then, $P\{X=1.10\}=2 \times(5 / 10)(4 / 9)=4 / 9$, and $P\{X=-1\}=5 / 9$. Therefore, $E X=\left(1.1 \times \frac{4}{9}\right)-\frac{5}{9}=-0.0 \overline{6}$.
(b) the variance of the amount you win.

Solution. Evidently, $E\left[X^{2}\right]=\left(1.1 \times \frac{4}{9}\right)+\frac{5}{9}=1.0 \overline{4}$. Therefore, $\operatorname{Var}(X)=1.0 \overline{4}-(-0.0 \overline{6})^{2}=$ 1.04 .

Theoretical Problems:

1. Let X be such that $P\{X=1\}=p$ and $P\{X=-1\}=1-p$. Find a constant $c \neq 1$ such that $E\left[c^{X}\right]=1$.

Solution. First, for all real c,

$$
E\left[c^{X}\right]=c p+c^{-1}(1-p)
$$

Set this equal to one to find that $c p+(1-p) / c=1$. I.e., $p c^{2}-c+(1-p)=0$. This is a quadratic equation (in c) and has two roots:

$$
c=\frac{1 \pm \sqrt{1-4 p(1-p)}}{2 p}
$$

But $1-4 p(1-p)=1-4 p+4 p^{2}=(1-2 p)^{2}$. Therefore,

$$
c=\frac{1 \pm(1-2 p)}{2 p}=1 \text { and } \frac{1-p}{p} .
$$

So the answer is $c=(1-p) / p$.
2. Prove that if X is a Poisson random variable with parameter λ, then for all $n \geq 1$,

$$
\begin{equation*}
E\left[X^{n}\right]=\lambda E\left[(X+1)^{n-1}\right] . \tag{1}
\end{equation*}
$$

Use this to compute $E X, E\left[X^{2}\right], \operatorname{Var} X$, and $E\left[X^{3}\right]$.
Solution. We calculate directly:

$$
\begin{aligned}
E\left[X^{n}\right] & =\sum_{k=0}^{\infty} k^{n} P\{X=k\} \\
& =\sum_{k=0}^{\infty} k^{n} \frac{e^{-\lambda} \lambda^{k}}{k!}=\sum_{k=1}^{\infty} k^{n} \frac{e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda \sum_{k=1}^{\infty} k^{n-1} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!}=\lambda \sum_{j=0}^{\infty}(j+1)^{n-1} \frac{e^{-\lambda} \lambda^{j}}{j!}=\lambda E\left[(X+1)^{n-1}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E X & =\lambda E\left[(1+X)^{0}\right]=\lambda, \\
E\left[X^{2}\right] & =\lambda E[(1+X)]=\lambda(1+\lambda)=\lambda+\lambda^{2}, \\
\operatorname{Var} X & =E\left[X^{2}\right]-(E X)^{2}=\lambda, \\
E\left[X^{3}\right] & =\lambda E\left[(1+X)^{2}\right]=\lambda\left\{E\left[1+2 X+X^{2}\right]\right\} \\
& =\lambda\left\{1+2 \lambda+\lambda+\lambda^{2}\right\}=\lambda+3 \lambda^{2}+\lambda^{3} .
\end{aligned}
$$

