Solutions to Assignment \#4
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. Suppose the distribution function of X is given by

$$
F(x)= \begin{cases}0, & \text { if } x<0 \\ 1 / 2, & \text { if } 0 \leq x<1 \\ 3 / 5, & \text { if } 1 \leq x<2 \\ 4 / 5, & \text { if } 2 \leq x<3 \\ 9 / 10, & \text { if } 3 \leq x<3.5 \\ 1, & \text { if } x \geq 3.5\end{cases}
$$

Compute the mass function of X.
Solution: Note that $P\{X \leq x\}=P\{X<x\}+P\{X=x\}$. That is, $F(x)=F(x-)+p(x)$. Solve to find that $p(x)=F(x)-F(x-)$ for all x. That is, $p(x)$ is the size of the jump of F at x (if any). Therefore,

$$
p(x)= \begin{cases}1 / 2, & \text { if } x=0 \\ (3 / 5)-(1 / 2)=1 / 10, & \text { if } x=1 \\ (4 / 5)-(3 / 5)=1 / 5, & \text { if } x=2 \\ (9 / 10)-(4 / 5)=1 / 10, & \text { if } x=3 \\ 1-(9 / 10)=1 / 10, & \text { if } x=3.5 \\ 0, & \text { otherwise }\end{cases}
$$

2. Five distinct numbers are randomly distributed to players numbered 1 through 5. Whenever two players compare their numbers, the one with the higher one is declared the winner. Initially, players 1 and 2 compare their numbers; the winner then compares with player 3; and so on. Let X denote the number of times player 1 is declared a winner. Find the mass function of X. Use this to find the probability that X is even.
Solution: Let Y_{j} denote the number distributed to player j. Note that $\left(Y_{1}, \ldots, Y_{5}\right)$ is a random permutation of $(1, \ldots, 5)$, all permutations being equally likely. Therefore, $p(0)=P\{X=0\}=P\left\{Y_{1}<Y_{2}\right\}$. But half of all permutations of $(1, \ldots, 5)$ have $Y_{1}<Y_{2}$, whereas half have $Y_{1}>Y_{2}$. Therefore,

$$
p(0)=\frac{\frac{1}{2} \times 5!}{5!}=\frac{1}{2} .
$$

Next note that $p(1)=P\left\{Y_{2}<Y_{1}<Y_{3}\right\}$. The number of ways to end up with $Y_{2}<Y_{1}<Y_{3}$ is the same as the number of ways to get $Y_{1}<Y_{2}<Y_{3}$. This is the same as \ldots. Therefore, the number of ways to get $Y_{2}<Y_{1}<Y_{3}$ is $1 / 3$! times the total number of permutations. That is,

$$
p(1)=\frac{\frac{1}{3!} \times 5!}{5!}=\frac{1}{6} .
$$

Next note that

$$
\begin{aligned}
p(2)= & P\left\{Y_{2}<Y_{1}, Y_{3}<Y_{1}, Y_{4}>Y_{1}\right\} \\
= & P\left\{Y_{1}=3, Y_{2}=1, Y_{3}=2\right\}+P\left\{Y_{1}=3, Y_{2}=2, Y_{3}=1\right\} \\
& +P\left\{Y_{1}=4, Y_{2}=1, Y_{3}=2, Y_{4}=5\right\}+P\left\{Y_{1}=4, Y_{2}=2, Y_{3}=1, Y_{4}=5\right\} \\
& +P\left\{Y_{1}=4, Y_{2}=1, Y_{3}=3, Y_{4}=5\right\}+\cdots \\
= & \left(\frac{2}{5!}+\frac{2}{5!}\right)+\left(\frac{1}{5!}+\frac{1}{5!}+\cdots\right) \\
= & \left(2 \times \frac{2}{5!}\right)+\left(6 \times \frac{1}{5!}\right)=\frac{1}{12} .
\end{aligned}
$$

Next we note that

$$
\begin{aligned}
p(3) & =P\left\{Y_{2}<Y_{1}, Y_{3}<Y_{1}, Y_{4}<Y_{1}, Y_{5}>Y_{1}\right\} \\
& =P\left\{Y_{1}=4, Y_{1}=1, Y_{2}=2, Y_{3}=3, Y_{4}=4, Y_{5}=5\right\}+\cdots \\
& =\frac{4!}{5!}=\frac{1}{5} .
\end{aligned}
$$

Finally,

$$
p(4)=P\left\{Y_{1}=5\right\}=\frac{1}{5}
$$

Consequently, $P\{X$ is even $\}=p(2)+p(4)=(1 / 12)+(1 / 5)=17 / 60=0.283 \overline{3}$. [Some people think of 0 as even. Then for them this probability is $47 / 60$. Both answers are correct, depending on your interpretation.]
3. Four independent flips of a fair coin are made. Let X denote the number of heads so obtained. Find the mass function of $X-2$, and plot this function.
Solution: Let $Z:=X-2$. Then, the possible values of Z are $0, \pm 1, \pm 2$. Note that $P\{Z=$ $0\}=P\{X=2\}=\binom{4}{2}(1 / 2)^{4}=3 / 8, P\{Z=1\}=P\{X=3\}=\binom{4}{3}(1 / 2)^{4}=1 / 4$, $P\{Z=-1\}=P\{X=1\}=\binom{4}{1}(1 / 2)^{4}=1 / 4, P\{Z=2\}=P\{X=4\}=$ $\binom{4}{4}(1 / 2)^{4}=1 / 16$, and $P\{Z=-2\}=P\{X=0\}=\binom{4}{0}(1 / 2)^{4}=1 / 16$. Plotting is left up to you.
4. A fair coin is continually flipped until heads appear for the tenth time. Let X denote the number of tails that occur in the mean time. Compute $P\{2 \leq X \leq 5\}$.
Solution: Note that $X=k$ if and only if the tenth head occurs on trial $10+k$. Therefore, $P\{X=k\}$ can be found from hypergeometric probabilities:

$$
P\{X=k\}=\binom{9+k}{k} \frac{1}{2^{10+k}}, \quad k=0,1,2, \ldots
$$

Theoretical Problems:

1. Let X be a negative binomial random variable with parameters r and p, and let Y be a binomial random variable with parameters n and p. Prove that

$$
P\{X>n\}=P\{Y<r\}
$$

Solution: Perform independent Bernoulli trials, where the success-per-trial probability is p. Then X is the first time we get the r th success, so that $P\{X>n\}$ is the probability that the total number of successes in the first n trials is strictly less than r. Because Y is the total number of successes in the first n trials, we have the identity.
2. Suppose X is geometric with parameter p. That is, $P\{X=k\}=p(1-p)^{k-1}$ for $k=1,2, \ldots$ Then:
(a) Compute explicitly $P\{X \geq n\}$ for any positive integer n.

Solution: This is just summing a geometric series; i.e.,

$$
\begin{aligned}
P\{X \geq n\} & =\sum_{j=n}^{\infty} P\{X=j\} \\
& =p \sum_{j=n}^{\infty}(1-p)^{j-1}=p \sum_{\ell=n-1}^{\infty}(1-p)^{\ell} \\
& =p \cdot \frac{(1-p)^{n}}{1-(1-p)}=(1-p)^{n}
\end{aligned}
$$

(b) Compute explicitly $P\{X=n+k \mid X \geq n\}$. Compare your answer to $P\{X=k\}$.

Solution: The conditional probability that we seek is

$$
\begin{aligned}
P\{X=n+k \mid X \geq n\} & =\frac{P\{X=n+k, X>n\}}{P\{X \geq n\}}=\frac{P\{X=n+k\}}{P\{X \geq n\}} \\
& =\frac{p(1-p)^{n+k-1}}{(1-p)^{n}}=p(1-p)^{k-1} \\
& =P\{X=k\}
\end{aligned}
$$

The original formulation of the question asked for $P\{X=n+k \mid X>n\}$. A similar calculation shows that this is equal to $p(1-p)^{k-2}=P\{X=k\} /(1-p)$.

