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Problems:

1. What is the probability that at least one of a pair of fair dice lands on 6, given that
the sum of the dice is i, for i = 2, 3, . . . , 12?

Solution: Let A denote the event that at least one of a pair of fair dice lands on 6, and Si

the event that the sum of the dice is i, for i = 2, 3, . . . , 12. It suffices to do this
for i = 7, 8, 9, 10, 11, 12, because the others are zero. First, we compute P (Si) for
the latter values of i. But P (Si) is #(Si)/36, where #(Si) denotes the number
of ordered ways of getting the sum to be i. Thus,

P (S7) = 6/36
P (S8) = 5/36
P (S9) = 4/36

P (S10) = 3/36
P (S11) = 2/36
P (S12) = 1/36.

Therefore,

P (A |S7) =
P (A ∩ S7)

P (S7)
=

2/36
6/36

= 1/3

P (A |S8) =
P (A ∩ S8)

P (S8)
=

2/36
5/36

= 2/5

P (A |S9) =
P (A ∩ S9)

P (S9)
=

2/36
4/36

= 1/2

P (A |S10) =
P (A ∩ S10)

P (S10)
=

2/36
3/36

= 2/3

P (A |S11) =
P (A ∩ S11)

P (S11)
=

2/36
2/36

= 1

P (A |S12) =
P (A ∩ S12)

P (S12)
=

1/36
1/36

= 1.

2. The king comes from a family of 2 children. What is the probability his sibling is a
girl?

Solution: Let Bi denote the event that the ith child is a boy and Gi = Bc
i the event that

the ith child is a girl. Note that G1 ∪ G2 is the event that there is at least one
girl. Thus, we are asked to compute P (G1 ∪G2 |B1 ∪B2). First of all,

P (B1 ∪B2) = 1− P (G1)P (G2) = 3/4.



Also, note that (G1 ∪G2)∩ (B1 ∪B2) is the event that we have a boy and a girl.
Its probability is equal to P (G1 ∩ B2) + P (B1 ∩ G2) = (1/4) + (1/4) = (1/2).
Therefore, the answer is 1

2/ 3
4 = (2/3).

3. Suppose that 5% of all men and 0.25% of all women are colorblind. A colorblind
person is chosen at random. What is the probability that this person is male? Assume
that there are an equal number of men and women. What if the population consisted
of twice as many mean as women?

Solution: Let M = {man} and C = {color blind}. We know: (a) P (C |M) = 0.05; (b)
P (C |M c) = 0.0025; (c) P (M) = 1/2. We seek to find P (M |C). First, we
reverse the order of conditioning:

P (M |C) = P (C |M)
P (M)
P (C)

= 0.05× 0.5
P (C)

.

Next, we use Bayes’s formula to compute P (C), viz.,

P (C) = P (C |M)P (M) + P (C |M c)P (M c)
= (0.05× 0.5) + (0.0025× 0.5) ≈ 0.02625.

Therefore, P (M |C) ≈ 0.9523.

4. Suppose we have 10 coins such that if the ith coin if flipped then heads will appear
with probability i/10 (i = 1, . . . , 10). One of the coins is selected at random, and then
flipped. We are told that it shows heads. What is the probability that it was the fifth
coin?

Solution: Let Ci denote the event that the ith coin is selected. Then, we know that
P (H |Ci) = i/10, and P (Ci) = 1/10. Therefore,

P (C5 |H) =
P (C5 ∩H)

P (H)

=
P (H |C5)P (C5)∑10
i=1 P (H |Ci)P (Ci)

=
(5/10)× (1/10)∑10
i=1(i/10)× (1/10)

=
5

1 + · · ·+ 10
=

1
11

.

The last line follows from the fact that (1 + · · ·+ 10) =
(
11
2

)
= 55. Can you think

of a combinatorial proof for this?) More generally, for all ` = 1, . . . , 10 we have

P (C` |H) =
`

1 + · · ·+ 10
=

`

55
.



5. Let S = {1, . . . , n} and suppose that A and B are two independent, random subsets of
S, all subsets being equally likely.

(a) Prove that P{A ⊂ B} = (3/4)n.

Solution: Let NB denote the number of elements of B. Then, by Bayes’ rule,

P{A ⊂ B} =
n∑

k=0

P (A ⊂ B |NB = k )× P{NB = k}

=
n∑

k=0

2k

2n
×

(
n
k

)
2n

=
1
4n

n∑
k=0

(
n

k

)
2k

=
3n

4n
,

by the binomial theorem.

(b) Prove that P{A ∩B = ∅} = (3/4)n.

Solution: The event {A ∩ B = ∅} is the same as {A ⊂ Bc}. Because A and Bc are
independent random subsets of S,

P{A ⊂ Bc} =
n∑

k=0

P (A ⊂ Bc |NBc = k )× P{NBc = k}

=
n∑

k=0

2k

2n
× P {NB = n− k} =

n∑
k=0

2k

2n
×

(
n

n−k

)
2n

=
1
4n

n∑
k=0

(
n

k

)
2k =

3n

4n
.

Theoretical Problems:

1. In Laplace’s rule of succession (page 109, seventh edition), suppose that the first n
flips resulted in r heads and (n− r) tails. Show that the probability that the (n + 1)st
flip turns up heads is (r + 1)/(n + 2).

Solution: Let En denote the event that, in the first n flips, there are r heads and (n− r)
tails. Let Ci denote the event that the ith coin was selected. We know that
P (Ci) = 1/(k + 1), and

P (En |Ci) =
(

n

r

) (
i

k

)r (
1− i

k

)n−r

.

[Binomial probabilities.] Let Hi denote the event that, in the ith flip, we got



heads. Then

P (Hn+1 |En) =
k∑

i=0

P (Hn+1 ∩ Ci |En)

=
k∑

i=0

P (Hn+1 |Ci ∩ En)P (Ci |En)

=
k∑

i=0

(
i

k

)
P (Ci |En),

since the (n + 1)st toss is independent of the first n tosses. Now,

P (Ci |En) = P (En |Ci)
P (Ci)
P (En)

=
(

n

r

) (
i

k

)r (
1− i

k

)n−r 1/(k + 1)
P (En)

.

By the Bayes’s formula,

P (En) =
k∑

j=0

P (En |Cj)P (Cj)

=
1

k + 1

k∑
j=0

(
n

r

) (
j

k

)r (
1− j

k

)n−r

.

Therefore, combine terms to find that

P (Hn+1 |En) =
∑k

i=0

(
i
k

)r+1 (
1− i

k

)n−r∑k
j=0

(
j
k

)r (
1− j

k

)n−r

→
∫ 1

0
xr+1(1− x)n−r dx∫ 1

0
xr(1− x)n−r dx

,

as k →∞. Suppose we could prove that

C(n, m) :=
∫ 1

0

xn(1− x)m dx =
n!m!

(n + m + 1)!
. (1)

Then we have shown that

lim
k→∞

P (Hn+1 |En) =
C(r + 1, n− r)

C(r, n− r)
=

(r + 1)!(n− r)!/(n + 2)!
r!(n− r)!/(n + 1)!

=
r + 1
n + 2

,



This is (essentially) what we are asked to verify. It remains to prove (1). Now
integrate by parts (u = xn, dv = (1 − x)m dx) to find that du = nxn−1 dx,
v = −(1− x)m+1/(m + 1), and

C(n, m) =
∫ 1

0

u dv = (uv)
∣∣∣x=1

x=0
−

∫ 1

0

v du

=
n

m + 1

∫ 1

0

xn−1(1− x)m+1 dx =
n

m + 1
C(n− 1,m + 1).

Therefore,

C(n, m) =
n

m + 1
C(n− 1,m + 1)

=
n

m + 1
· n− 1
m + 2

C(n− 2,m + 2)

...

=
n

m + 1
· n− 1
m + 2

· · · 1
m + n

C(0,m + n)

=
n

m + 1
· n− 1
m + 2

· · · 1
m + n

∫ 1

0

(1− x)n+m dx

=
n

m + 1
· n− 1
m + 2

· · · 1
m + n

· 1
n + m + 1

,

as desired.


