Solutions to Problem Assignment #2 Math 501–1, Spring 2006 University of Utah

Problems:

- 1. Consider n-digit numbers where each digit is one of the 10 integers $0, 1, \ldots, 9$. How many such numbers are there for which:
 - (a) No two consecutive digits are equal?
 - **(b)** 0 appears as a digit a total of i times, i = 0, ..., n?
- **Solution:** For (a) we have $10 \times 9^{n-1}$. For (b), choose the *i* spots first, and then dispurse 1-9 in the remaining n-i spots. Answer: $\binom{n}{i} \times 9^{n-i}$.
 - 2. A student is to answer 7 out of 10 questions in an examination. How many choices has she? How many if she must answer at least 3 of the first 5 questions?
- **Solution:** She has $\binom{10}{7}$ choices. In the second case, the answer is $\binom{5}{3}\binom{5}{4} + \binom{5}{4}\binom{5}{3} + \binom{5}{5}\binom{5}{2}$.
 - **3.** If 8 new teachers are to divided among 4 schools, then how many divisions are possible? What if each school must receive at least 2 new teachers?
- **Solution:** For the first part, distribute the schools to the teachers: Number of distinct ways is 4^8 . For the second part, you assign 2 teachers per school. Number of distinct ways is $\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}$.
 - **4.** If all $\binom{52}{5}$ possible poker hands are equally likely, then what is the probability of:
 - (a) a flush? [This is when all cards have the same suit; e.g., $A_{\blacktriangle}, 2_{\blacktriangle}, 5_{\blacktriangle}, J_{\blacktriangle}, K_{\blacktriangle}$.]
- **Solution:** First choose the suit (4 ways), and then the cards $\binom{13}{5}$ ways). Answer: $4\binom{13}{5}$.
 - (b) one pair? [This is when the cards have the denominations a, a, b, c, d, where a, b, c, and d are all distinct. E.g., $A_{\spadesuit}, A_{\clubsuit}, 2_{\spadesuit}, 3_{\clubsuit}, Q_{\heartsuit}$.]
- **Solution:** Choose the pair (13 ways), deal it $\binom{4}{2}$ ways), choose the other three $\binom{12}{3}$, and deal them $\binom{4^3}{2}$. This yields $13\binom{4}{2}\binom{12}{3}4^3$.
 - (c) four of a kind? [This is when the cards have denominations a, a, a, b. E.g., $A_{\spadesuit}, A_{\diamondsuit}, A_{\diamondsuit}, 10_{\heartsuit}$.]
- **Solution:** Choose and deal the "four" (13 ways), and then choose and deal the other one (48 ways). This yields $13 \times 48 = 624$.