Solutions to Problem Assignment \#2
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. Consider n-digit numbers where each digit is one of the 10 integers $0,1, \ldots, 9$. How many such numbers are there for which:
(a) No two consecutive digits are equal?
(b) 0 appears as a digit a total of i times, $i=0, \ldots, n$?

Solution: For (a) we have $10 \times 9^{n-1}$. For (b), choose the i spots first, and then dispurse $1-9$ in the remaining $n-i$ spots. Answer: $\binom{n}{i} \times 9^{n-i}$.
2. A student is to answer 7 out of 10 questions in an examination. How many choices has she? How many if she must answer at least 3 of the first 5 questions?
Solution: She has $\binom{10}{7}$ choices. In the second case, the answer is $\binom{5}{3}\binom{5}{4}+\binom{5}{4}\binom{5}{3}+\binom{5}{5}\binom{5}{2}$.
3. If 8 new teachers are to divided among 4 schools, then how many divisions are possible? What if each school must receive at least 2 new teachers?

Solution: For the first part, distribute the schools to the teachers: Number of distinct ways is 4^{8}. For the second part, you assign 2 teachers per school. Number of distinct ways is $\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}$.
4. If all $\binom{52}{5}$ possible poker hands are equally likely, then what is the probability of:
(a) a flush? [This is when all cards have the same suit; e.g., $A_{\boldsymbol{\alpha}}, 2_{\boldsymbol{\alpha}}, 5_{\boldsymbol{\alpha}}, J_{\boldsymbol{\alpha}}, K_{\boldsymbol{\mu}}$.]

Solution: First choose the suit (4 ways), and then the cards ($\binom{13}{5}$ ways). Answer: $4\binom{13}{5}$.
(b) one pair? [This is when the cards have the denominations a, a, b, c, d, where a, b, c, and d are all distinct. E.g., $\left.A_{\boldsymbol{\omega}}, A_{\boldsymbol{\omega}}, 2_{\boldsymbol{\omega}}, 3_{\boldsymbol{\leftrightarrow}}, Q_{0}.\right]$
Solution: Choose the pair (13 ways), deal it ($\binom{4}{2}$ ways), choose the other three $\left(\binom{12}{3}\right)$, and deal them $\left(4^{3}\right)$. This yields $13\binom{4}{2}\binom{12}{3} 4^{3}$.
(c) four of a kind? [This is when the cards have denominations a, a, a, a, b. E.g., $\left.A_{\boldsymbol{\omega}}, A_{\boldsymbol{\omega}}, A_{\circlearrowleft}, A_{\diamond}, 10_{\circlearrowleft}.\right]$

Solution: Choose and deal the "four" (13 ways), and then choose and deal the other one (48 ways). This yields $13 \times 48=624$.

