Solutions to Problem Assignment \#1
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments are possible?

Solution: $20!\approx 2.43 \times 10^{18}$.
2. Consider a group of 20 people. If everyone shakes hands with everyone else, then how many handshakes take place?

Solution: $\binom{20}{2}=\frac{20!}{2!\times 18!}=\frac{20 \times 19}{2!}=190$.
3. Five separate awards (best scholarship, best leadership qualities, and so on) are to be presented to selected students from a class of 30. How many different outcomes are possible if:
(a) a student can receive any number of awards;

Solution: $30^{5}=24,300,000$.
(b) each student can receive at most 1 award?

Solution: $30 \times 29 \times 28 \times 27 \times 26=17,100,720$.
4. A person has 8 friends, of whom 5 will be invited to a party.
(a) How many choices are there if 2 of the friends are feuding and will not attend together?

Solution: There are a total of $\binom{8}{5}=\frac{8!}{3!\times 5!}=56$ ways to form invitations. But many of them contain the feuding duo. The number of possible invitations that contain the feuding duo is, in fact, $\binom{6}{3}=20$. Therefore, there are $56-20=36$ possible invitations that do not include both of the fighting pair.
(b) How many choices if 2 of the friends will only attend together?

Solution: There are 20 possible ways for inviting the two. Also, there are $\binom{6}{5}=6$ ways of not inviting them. Thus, there are 26 many possible invitations of this type.

Theoretical Problems:

1. Verify that $\binom{n}{k}=\binom{n}{n-k}$. Use this to prove that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} .
$$

It is easy to see that $\binom{n}{k}=\frac{n!}{k!\times(n-k)!}=\frac{n!}{(n-k)!\times k!}=\binom{n}{n-k}$. Now, $\binom{2 n}{n}$ is the number of ways of forming a team of n people from $2 n$. Now concentrate on the $2 n$ people. Our team could be formed by either choosing:
\#1. 0 people from the first n and n people from the second n; or
$\# 2$. 1 person from the first n and $n-1$ people from the second n; or \cdots
\vdots
$\# n . n$ people from the first n and 0 people from the second n.
Items \#1 through \#n cannot be done simultaneously. So they represent different ways in total. For $\# k$, the number of choices are $\binom{n}{k}\binom{n}{n-k}=\binom{n}{k}^{2}$. Therefore, there are $\sum_{k=0}^{n}\binom{n}{k}^{2}$-many ways of creating our team. But this must be equal to $\binom{2 n}{n}$.

