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Solutions to Homework 5

Math 4200, Summer 2009

July 12, 2009

Straight forward.

From #2 we know that 1/f(z) — 0 as z — oo. If f has no zeros in C,
then 1/f must be a bounded analytic function, and hence 1/f(z) = 0
for all z by Liouville’s theorem. But this is absurd because f is analytic.

Therefore, f has zeros.

The function g(z) := e/(*) is analytic. Moreover, |g(z)] = efe/(*) is

bounded. By Liouville’s theorem, g is a constant, and hence so is f.

The set {1,1/2,1/3,...} is not discrete because it has a limit point at
zero. So, if f(1/n) = 0 for all n and f is analytic, then f(z) = 0 for all
z. It is easy to construct a function f that is analytic on C\ {0} and
f(1/n) =0 for all n > 1 though. For instance, consider f(z) = e/,

Write the power-series expansion of sin:

2:3 n 2n+1 3 )k+1 2k

and deduce that sinz — 2z = 23g(2), where
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Note that g is analytic near zero, and nonzero. In fact, g(0) = —1/6. In

particular, the order of zero of sin z — z is three.

Let f(z) = sinz. Then, f(2mn) = 0 for all integers n. Let U := D, (0) U
D, ({r}), and note that U is the union of two disjoint balls, and if r is

sufficiently small, then f has exactly one zero in each ball. Suppose we
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could apply the first part of Theorem 3.4.2 to this example. Then, we
could write f(z) = z¥g(z), where g is analytic on U and nonvanishing on
U. In particular, f(7) = 7%g(r) # 0, which is absurd.

Write

1 1 1

f(z)zgll—z-l—kz'

So we have simple poles respectively at 0, 1, and —1.

Compute directly first:
2% — 1|2 =(22-1)(22 = 1) = |2|* — 2Re(2?) + 1.
Therefore,
|2271|2: (z2fl)m:2(17Re(22)) whenever |z| = 1.

Write z = x + iy to see that 22 = 22 — y? + 2ixy. Therefore, Re(2?) =

22 — y? = (Rez)? — (Imz)?2, and therefore,
|2% — 1|2 =2 (1+ (Imz)* — (Rez)?) whenever |z| = 1.
On the other hand, if |z| = 1 the (Rez)? + (Imz)? = 1. Therefore,
|22 — 1|2 = 4(Imz)? whenever |z| = 1.

This is maximized precisely when (Imz)? = |2|? = 1; that is when Rez = 0;

ie., z = £i.

We wish to maximize |z — 1| on the triangle A with vertices at 0, 1 + 4,
and 1 — 4. The maxima occur at all the three endpoints of A, and the

value of the maximum is one.

Suppose, to the contrary, that f(z) # 0 for all z € D1(0). Then 1/f
is an analytic function on D;(0). And |1/f(z)| = 1 on the boundary of
D4 (0). By the maximum modulus principle, |1/ f(z)| < 1 for all z € D;(0).
Equivalently, |f(z)| > 1 for all z € D;(0).

On the other hand, |f(z)] = 1 on D1(0). Therefore by the maximum
modulus principle, |f(z)| < 1 for all z € D1(0). The preceding shows that
|f(2)| > 1 and |f(z)| < 1—hence |f(z)| = 1—for all z € D1(0). Another



appeal to the maximum modulus principle shows that f is a constant in

D4 (0), which is a contradiction.



