
Solutions to Homework 5

Math 4200, Summer 2009

July 12, 2009

#2, p. 101. Straight forward.

#3, p. 101. From #2 we know that 1/f(z) → 0 as z → ∞. If f has no zeros in C,
then 1/f must be a bounded analytic function, and hence 1/f(z) = 0
for all z by Liouville’s theorem. But this is absurd because f is analytic.
Therefore, f has zeros.

#5, p. 101. The function g(z) := ef(z) is analytic. Moreover, |g(z)| = eRef(z) is
bounded. By Liouville’s theorem, g is a constant, and hence so is f .

#3, p. 109. The set {1 , 1/2 , 1/3 , . . .} is not discrete because it has a limit point at
zero. So, if f(1/n) = 0 for all n and f is analytic, then f(z) = 0 for all
z. It is easy to construct a function f that is analytic on C \ {0} and
f(1/n) = 0 for all n ≥ 1 though. For instance, consider f(z) = e2πi/z.

#4, p. 109. Write the power-series expansion of sin:

sin z = z − z3

3!
+
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· · · = z +

∞∑
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(−1)nz2n+1

(2n+ 1)!
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and deduce that sin z − z = z3g(z), where

g(z) =
∞∑
k=0

(−1)k+1z2k

(2k + 3)!
= −1

6
+
z2

5!
− z4

7!
· · · .

Note that g is analytic near zero, and nonzero. In fact, g(0) = −1/6. In
particular, the order of zero of sin z − z is three.

#6, p. 109. Let f(z) = sin z. Then, f(2πn) = 0 for all integers n. Let U := Dr(0) ∪
Dr({π}), and note that U is the union of two disjoint balls, and if r is
sufficiently small, then f has exactly one zero in each ball. Suppose we
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could apply the first part of Theorem 3.4.2 to this example. Then, we
could write f(z) = zkg(z), where g is analytic on U and nonvanishing on
U . In particular, f(π) = πkg(π) 6= 0, which is absurd.

#13, p. 109. Write

f(z) =
1
z
· 1

1− z
· 1

1 + z
.

So we have simple poles respectively at 0, 1, and −1.

#1, p. 114. Compute directly first:

∣∣z2 − 1
∣∣2 = (z2 − 1) (z2 − 1) = |z|4 − 2Re(z2) + 1.

Therefore,

∣∣z2 − 1
∣∣2 = (z2 − 1) (z2 − 1) = 2

(
1− Re(z2)

)
whenever |z| = 1.

Write z = x + iy to see that z2 = x2 − y2 + 2ixy. Therefore, Re(z2) =
x2 − y2 = (Rez)2 − (Imz)2, and therefore,

∣∣z2 − 1
∣∣2 = 2

(
1 + (Imz)2 − (Rez)2

)
whenever |z| = 1.

On the other hand, if |z| = 1 the (Rez)2 + (Imz)2 = 1. Therefore,

∣∣z2 − 1
∣∣2 = 4(Imz)2 whenever |z| = 1.

This is maximized precisely when (Imz)2 = |z|2 = 1; that is when Rez = 0;
i.e., z = ±i.

#3, p. 114. We wish to maximize |z − 1| on the triangle 4 with vertices at 0, 1 + i,
and 1 − i. The maxima occur at all the three endpoints of 4, and the
value of the maximum is one.

#5, p. 115. Suppose, to the contrary, that f(z) 6= 0 for all z ∈ D1(0). Then 1/f
is an analytic function on D1(0). And |1/f(z)| = 1 on the boundary of
D1(0). By the maximum modulus principle, |1/f(z)| ≤ 1 for all z ∈ D1(0).
Equivalently, |f(z)| ≥ 1 for all z ∈ D1(0).

On the other hand, |f(z)| = 1 on D1(0). Therefore by the maximum
modulus principle, |f(z)| ≤ 1 for all z ∈ D1(0). The preceding shows that
|f(z)| ≥ 1 and |f(z)| ≤ 1—hence |f(z)| = 1—for all z ∈ D1(0). Another
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appeal to the maximum modulus principle shows that f is a constant in
D1(0), which is a contradiction.
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