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#4, p. 20. If ez = 1 + i
√

3, then z = log(1 + i
√

3) + 2πki, for some integer k =
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#9, p. 20. Because ez = eRe z ·eiIm z = ez(cos Re z+sin Im z), it follows that ez ∈ R if
and only if sin Im z = 0. That is, Im z = 0,±π,±2π, . . . [plot these point!].
Similarly, ez is purely imaginary if and only if Im z = ±π/2,±3π/2, . . .
[plot these also!].

#4, 27. In polar coordinates, 1− i =
√

2e−iπ/4 and 1 + i =
√

2eiπ/4. Therefore,

(1− i)7

1 + i
=

27/2e−i7π/4

21/2eiπ/4
= 23e−2πi = 8.

#10, p. 27. These are simple computations: (a) −π/2; (b) 3π/2; (c) 2π.

#14, p. 37. (a) Let A := {w ∈ U : |w| < r}. Then A is open in U [in fact, A is the
open ball of radius e inside U ]. It suffices to verify the following: Claim.

f−1(A) := {z ∈ U : |f(z)| < r}.

This is straight-forward. But I will prove it once so that you can remember
how this sort of thing is proved. For the sake of convenience define Ã :=
{z ∈ U : |f(z)| < r}. We wish to show that f−1(A) = Ã by first
establishing that f−1(A) ⊆ Ã, and then that Ã ⊆ f−1(A).

1. If w ∈ f−1(A), then f(w) ∈ A, and therefore |f(w)| < r by the defi-
nition of A. This shows that f−1(A) ⊆ Ã. 2. If z ∈ Ã, then |f(z)| < r,
whence f(z) ∈ A. That is, z ∈ f−1(A). This proves the remaining portion
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that Ã ⊆ f−1(A).

(b) This part is similar to (a), but now in place of A, we consider A1 :=
{w ∈ U : Rew < r}. If we showed that A1 is open then it follows from the
method of (a) that f−1(A1) = {z ∈ U : Re f(z) < r} is also open. Define
g(z) := Re z. Then, g is continuous and A1 = g−1(A), which is open by
part (a).

#7, p. 43. Apply complex chain rule [Theorem 2.2.7, p. 39] to f(z) = g(h(z)), where
g(z) := exp(z) and h(z) := z3 to find that f ′(z) = 3z2 exp(z3).

#11, p. 44. Suppose f is analytic on C, and real-valued. Write f = u+ iv, to see that
v ≡ 0. By the Cauchy–Riemann, equations,

f ′(z) = ux(z) = −iuy(z).

Because ux and uy are real-valued, the preceding tells us that they are
both zero [zero being the only number in C that is both real and purely
imaginary]. Therefore, u does not depend on x and y. That is, f is a
constant.

# 12, p. 44. By chain rule, ur = ux · ∂x∂r +uy · ∂y∂r = ux · cos θ+uy · sin θ. Recall that the
Cauchy–Riemann equations tell us that ux = vy and uy = −vx. Apply
these in the previous display to find that

ur = vy cos θ − vx sin θ. (1)

Another round of chain rule tells that

uθ = −r (vx cos θ + vy sin θ) . (2)

Also,
vr = vx cos θ + vy sin θ, (3)

and
vθ = −r sin θ + rvy cos θ. (4)

Compare (4) to (1) to find that vθ = rur; this is one of the desired
equations. For the other, compare (3) to (2) to find that uθ = −rvr.
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