Math 3220-001, Summer 2013, Exam 5

1. (10 points) Evaluate

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \int_{0}^{1} \sqrt{x} e^{-y / x} d x d y
$$

Solution. By Fubini, the integral is equal to

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \int_{0}^{1} \int_{0}^{N} \sqrt{x} e^{-y / x} d y d x & =\lim _{N \rightarrow \infty} \int_{0}^{1} x^{3 / 2} \int_{0}^{N / x} e^{-y} d y d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{1} x^{3 / 2}\left(1-e^{-N / x}\right) d x \\
& =\frac{2}{5}-\lim _{N \rightarrow \infty} \int_{0}^{1} x^{3 / 2} e^{-N / x} d x
\end{aligned}
$$

There are many different ways of seeing that the limit is zero. For example,

$$
\int_{0}^{1} x^{3 / 2} e^{-N / x} d x=N^{5 / 2} \int_{1 / N}^{\infty} y^{3 / 2} e^{-y} d y, \quad(y:=x / N)
$$

and this goes to zero as $N \rightarrow \infty$ by l'Hôpital's rule. Therefore, the preceding integral converges to zero as $N \rightarrow \infty$, and hence the answer is $2 / 5$.
2. (10 points) Let ϕ denote the 1-form $\phi(x, y)=x^{2} d x-d y$. Compute $\int_{\gamma} \phi$, where $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ denotes the curve $\gamma(t):=(\cos t, t)$.
Solution. $\phi_{1}(x, y)=x^{2}, \phi_{2}(x, y)=-1, \gamma^{\prime}(t)=(-\sin t, 1)$. Therefore,

$$
\begin{aligned}
\int_{\gamma} \phi & =\int_{0}^{1} \phi_{1}(\gamma(t)) \gamma_{1}^{\prime}(t) d t+\int_{0}^{1} \phi_{2}(\gamma(t)) \gamma_{2}^{\prime}(t) d t \\
& =-\int_{0}^{1}(\cos t)^{2} \sin t d t-1=\int_{1}^{\cos 1} u^{2} d u-1=\frac{(\cos 1)^{3}-1}{3}-1 \\
& =-\frac{4-(\cos 1)^{3}}{3}
\end{aligned}
$$

3. (10 points) Prove that a smooth parameter change does not change the length of a smooth curve.

Solution. Let $\gamma:[a, b] \rightarrow \mathbb{R}^{p}$ be a smooth curve, and $\alpha:[c, d] \rightarrow$ [$a, b]$ a smooth parameter change from γ to $\lambda:=\gamma \circ \alpha$. We have

$$
\ell(\lambda)=\int_{c}^{d}\left\|\lambda^{\prime}(t)\right\| d t=\int_{c}^{d}\left\|\gamma^{\prime}(\alpha(t)) \alpha^{\prime}(t)\right\| d t
$$

thanks to chain rule. Now, $\alpha^{\prime}(t)$ is a scalar and has a constant sign. Therefore, $\left\|\gamma^{\prime}(t) \alpha^{\prime}(t)\right\|=\alpha^{\prime}(t)\left\|\gamma^{\prime}(t)\right\|$. Therefore,

$$
\ell(\lambda)=\int_{c}^{d}\left\|\gamma^{\prime}(\alpha(t))\right\|\left|\alpha^{\prime}(t)\right| d t=\int_{a}^{b}\left\|\gamma^{\prime}(s)\right\| d s
$$

after a change of variables. The latter quantity is $\ell(\gamma)$.
4. (10 points total) Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function that rotates $(x, y) \in$ \mathbb{R}^{2} by 45°; that is,

$$
\varphi(x, y)=\binom{\frac{x+y}{\sqrt{2}}}{\frac{x-y}{\sqrt{2}}} .
$$

Let \mathcal{R} denote the rectangle $\mathcal{R}:=[0,1] \times[0,1]$.
(a) (5 points) Plot $\varphi(\mathcal{R})$.
(b) (5 points) Compute, using the change of variable formula of chapter 10 , the volume of $\varphi(\mathcal{R})$.

Solution. $\varphi(\mathcal{R})$ is the lozenge whose vertices are at $(0,0),(1 / \sqrt{2}, 1 / \sqrt{2})$, $(1 / \sqrt{2},-1 / \sqrt{2})$, and $(\sqrt{2}, 0)$. Note that φ is smooth, and

$$
d \varphi(x, y)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \Rightarrow \operatorname{det} d \varphi(x, y)=-1 .
$$

We know, from Chapter 10, that

$$
\begin{aligned}
V(\varphi(\mathcal{R})) & =\int_{\mathcal{R}}|\operatorname{det} d \varphi(x, y)| d V(x, y)=\int_{\mathcal{R}} d V(x, y) \\
& =V(\mathcal{R})=1
\end{aligned}
$$

