Math 3220-001, Summer 2013, Solutions to Exam 3

1. Consider the matrices

$$\boldsymbol{A} := \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}, \quad \boldsymbol{B} := \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}.$$

- (a) Compute det A.
 Solution: det A = (3 × 1) − (−2 × −2) = −1.
 (b) Calculate AB.
- Solution: $AB = \begin{pmatrix} 4 & 4 \\ -3 & -3 \end{pmatrix}$.
- (c) Find A^{-1} .

Solution:
$$A^{-1} = \begin{pmatrix} -1 & -2 \\ -2 & -3 \end{pmatrix}$$
.

- (d) Find the rank of \boldsymbol{B} . Solution: rank $(\boldsymbol{B}) = 1$.
- 2. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ that is defined by $f(x,y) := \sin(x)\cos(y)$ for all $x, y \in \mathbb{R}$. Compute:
 - (a) $\frac{\partial f}{\partial x}$. Solution: $\cos(x)\cos(y)$. (b) $\frac{\partial f}{\partial y}$. Solution: $-\sin(x)\sin(y)$. (c) $\frac{\partial^2 f}{\partial x^2}$ Solution: $-\sin(x)\cos(y)$.
 - (d) $\frac{\partial^2 f}{\partial x \, \partial y}$. Solution: $-\cos(x)\sin(y)$.
- Suppose f : R → R is a continuously-differentiable function, and g : R → R is an affine function such that: (i) g(0) = f(0); and (ii)

$$\lim_{h \to 0} \frac{f(h) - g(h)}{h} = 0.$$

Prove then that g(x) = f(0) + f'(0)x for all $x \in \mathbb{R}$.

Solution: Because g is affine, there exist constants a and b such that

$$g(x) = ax + b$$
 for all $x \in \mathbb{R}$.

Since g(0) = f(0), it follows that b = f(0); that is,

$$g(x) = ax + f(0)$$
 for all $x \in \mathbb{R}$.

But then

$$\frac{f(h) - g(h)}{h} = \frac{f(h) - [ah + f(0)]}{h} = \frac{f(h) - f(0)}{h} - a.$$

As $h \to 0$, the left-hand side converges to 0 by assumption, whereas the right-hand side converges to f'(0) - a by the definition of a derivative. This shows that 0 = f'(0) - a; equivalently, a = f'(0), and hence

$$g(x) = f'(0)x + f(0)$$
 for all $x \in \mathbb{R}$.

4. Compute the differential dL of L, where $L : \mathbb{R}^p \to \mathbb{R}^q$ is affine. [Hint: Start by writing L, in matrix form, as $L(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$.]

Solution: The hint says it all: Write $L(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}$ for all $\boldsymbol{x} \in \mathbb{R}^p$, where $\boldsymbol{b} \in \mathbb{R}^p$ is a vector and \boldsymbol{A} is a $q \times p$ matrix. Then,

$$L(\boldsymbol{x}+\boldsymbol{h})-L(\boldsymbol{x})=\boldsymbol{A}\boldsymbol{h}$$
 for every $\boldsymbol{x},\boldsymbol{h}\in\mathbb{R}^p.$

In particular,

$$\lim_{\boldsymbol{h}\to\boldsymbol{0}}\frac{L(\boldsymbol{x}+\boldsymbol{h})-L(\boldsymbol{x})-\boldsymbol{A}\boldsymbol{h}}{\|\boldsymbol{h}\|}=\boldsymbol{0}\qquad\text{for all }\boldsymbol{x}\in\mathbb{R}^p.$$

This means that $dL(\boldsymbol{x}) = \boldsymbol{A}$ for all $\boldsymbol{x} \in \mathbb{R}^p$.