Math 3220-001, Summer 2013, Solutions to Exam 3

1. Consider the matrices

$$
\boldsymbol{A}:=\left(\begin{array}{cc}
3 & -2 \\
-2 & 1
\end{array}\right), \quad \boldsymbol{B}:=\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)
$$

(a) Compute $\operatorname{det} \boldsymbol{A}$.

Solution: $\operatorname{det} \boldsymbol{A}=(3 \times 1)-(-2 \times-2)=-1$.
(b) Calculate $\boldsymbol{A B}$.

Solution: $\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{cc}4 & 4 \\ -3 & -3\end{array}\right)$.
(c) Find \boldsymbol{A}^{-1}.

Solution: $\boldsymbol{A}^{-1}=\left(\begin{array}{ll}-1 & -2 \\ -2 & -3\end{array}\right)$.
(d) Find the rank of \boldsymbol{B}.

Solution: $\operatorname{rank}(\boldsymbol{B})=1$.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is defined by $f(x, y):=$ $\sin (x) \cos (y)$ for all $x, y \in \mathbb{R}$. Compute:
(a) $\frac{\partial f}{\partial x}$. Solution: $\cos (x) \cos (y)$.
(b) $\frac{\partial f}{\partial y}$. Solution: $-\sin (x) \sin (y)$.
(c) $\frac{\partial^{2} f}{\partial x^{2}}$ Solution: $-\sin (x) \cos (y)$.
(d) $\frac{\partial^{2} f}{\partial x \partial y}$. Solution: $-\cos (x) \sin (y)$.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuously-differentiable function, and g : $\mathbb{R} \rightarrow \mathbb{R}$ is an affine function such that: (i) $g(0)=f(0)$; and (ii)

$$
\lim _{h \rightarrow 0} \frac{f(h)-g(h)}{h}=0 .
$$

Prove then that $g(x)=f(0)+f^{\prime}(0) x$ for all $x \in \mathbb{R}$.
Solution: Because g is affine, there exist constants a and b such that

$$
g(x)=a x+b \quad \text { for all } x \in \mathbb{R} .
$$

Since $g(0)=f(0)$, it follows that $b=f(0)$; that is,

$$
g(x)=a x+f(0) \quad \text { for all } x \in \mathbb{R} .
$$

But then

$$
\frac{f(h)-g(h)}{h}=\frac{f(h)-[a h+f(0)]}{h}=\frac{f(h)-f(0)}{h}-a .
$$

As $h \rightarrow 0$, the left-hand side converges to 0 by assumption, whereas the right-hand side converges to $f^{\prime}(0)-a$ by the definition of a derivative. This shows that $0=f^{\prime}(0)-a$; equivalently, $a=f^{\prime}(0)$, and hence

$$
g(x)=f^{\prime}(0) x+f(0) \quad \text { for all } x \in \mathbb{R}
$$

4. Compute the differential $\mathrm{d} L$ of L, where $L: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is affine. [Hint: Start by writing L, in matrix form, as $L(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}$.]
Solution: The hint says it all: Write $L(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}$ for all $\boldsymbol{x} \in \mathbb{R}^{p}$, where $\boldsymbol{b} \in \mathbb{R}^{p}$ is a vector and \boldsymbol{A} is a $q \times p$ matrix. Then,

$$
L(\boldsymbol{x}+\boldsymbol{h})-L(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{h} \quad \text { for every } \boldsymbol{x}, \boldsymbol{h} \in \mathbb{R}^{p} .
$$

In particular,

$$
\lim _{\boldsymbol{h} \rightarrow \mathbf{0}} \frac{L(\boldsymbol{x}+\boldsymbol{h})-L(\boldsymbol{x})-\boldsymbol{A} \boldsymbol{h}}{\|\boldsymbol{h}\|}=\mathbf{0} \quad \text { for all } \boldsymbol{x} \in \mathbb{R}^{p}
$$

This means that $\mathrm{d} L(\boldsymbol{x})=\boldsymbol{A}$ for all $\boldsymbol{x} \in \mathbb{R}^{p}$.

