Math 3210-1, Summer 2016 Solutions to Assignment 1

1.1. \#2. We are asked to show that the following two propositions are both true:
(a) $x \in A \cap(B \cup C) \Rightarrow x \in(A \cap B) \cup(A \cap C)$; and
(b) $x \in(A \cap B) \cup(A \cap C) \Rightarrow x \in A \cap(B \cup C)$.

To prove (a) let $x \in A \cap(B \cup C)$. Then, $x \in A$ and $x \in B \cup C$ (by the definition of " \cap "). Also, saying that " $x \in B \cup C$ " is the same as saying that "either $x \in B$ or $x \in C$." In the first case we deduce that $x \in A$ and $x \in B$; in the second that $x \in A$ and $x \in C$. In other words, $x \in(A \cap B) \cup(A \cap C)$, as desired.
To prove (b) let $x \in(A \cap B) \cup(A \cap C)$ and observe that either $x \in A \cap B$ [that is, $x \in A$ and $x \in B]$ or $x \in A \cap C$. In either case, $x \in A$ and either $x \in B$ or $x \in C$. That is, $x \in A \cap(B \cup C)$.
1.1. \#4. We claim that the answer is $[0,1]$. That is, we claim that

$$
\bigcap_{\substack{a<0 \\ b>1}}(a, b)=[0,1] .
$$

If $x \in[0,1]$ then $0 \leq x \leq 1$ whence $a<x<b$ for every $a<0$ and $b>1$. It follows that $[0,1] \subset(a, b)$ for all $a<0$ and $b>1$, whence

$$
[0,1] \subset \bigcap_{\substack{a<0 \\ b>1}}(a, b)
$$

In order to complete the proof, we establish the converse inclusion. By contraposition, we plan to verify that

$$
\begin{equation*}
x \notin[0,1] \Rightarrow x \notin \bigcap_{\substack{a<0 \\ b>1}}(a, b) . \tag{1}
\end{equation*}
$$

If $x \notin[0,1]$ then either $x<0$ or $x>1$. On one hand, if $x<0$, then we can find an open interval (a, b) that includes $[0,1]$ but does not contain x. For example, a could be $x-1$ and b could be 2 . On the other hand, if $x>1$ then we can still find an open interval (a, b) that includes $[0,1]$ but does not contain x. For example, a could be -1 and b could be $x+1$. In either case, we see that if $x \notin[0,1]$ then x is not in (a, b) for some $a<0$ and $b>1$. This proves (1).
1.1. \#5. We claim that

$$
\bigcap_{\substack{a \leq 0 \\ b \geq 1}}[a, b]=(0,1) .
$$

If $x \in(0,1)$, then $x \in[a, b]$ for all $a \leq 0$ and $b \geq 1$, and hence

$$
\bigcap_{\substack{a \leq 0 \\ b \geq 1}}[a, b] \supset(0,1) .
$$

On the other hand, if $x \notin(0,1)$, then $x \notin[a, b]$ for some $a \leq 0$ and $b \geq 0$ for the following reason: If $x \leq 0$, then $x \notin[x / 2,1]$; and if $x \geq 1$ then $x \notin[0,(x+1) / 2]$.
1.1. $\# 13$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x):=x^{2}$ for all $x \in \mathbb{R}$. Set $E=[-1,1]$ and $F=[0,1]$. Then, $f(E)=f(F)=[0,1]$-in particular, $f(E) \backslash f(F)=\varnothing$-and $f(E \backslash F)=f([-1,0])=$ $[0,1] \neq \varnothing$.
1.2. \#2. First consider the case that $n=1$. In that case, we are tasked to prove that $m+1 \neq 1$ for all $m \in \mathbb{N}$. But this is a part of the construction of the natural numbers.
Next (induction hypothesis) assume that $m+n \neq n$ for some $n \in \mathbb{N}$ and all $m \in \mathbb{N}$. We need to prove that $m+(n+1) \neq n+1$. Subtract one from both sides to see that our goal is to prove that $m+n \neq n$, which is a consequence of the induction hypothesis.
1.2. $\# 14$. First of all, $x_{1}=1, x_{2}=\frac{1}{2}$, and $x_{3}=\frac{2}{3}$; therefore, x_{3} falls between x_{1} and x_{2}. This is the base case. Now set up the induction hypothesis: Suppose x_{n+2} lies between x_{n} and x_{n+1}. That is,

$$
\begin{equation*}
x_{n}<x_{n+2}<x_{n+1} \quad \text { or } \quad x_{n+1}<x_{n+2}<x_{n} . \tag{2}
\end{equation*}
$$

If $x_{n}<x_{n+2}<x_{n+2}$, then

$$
x_{n+3}=\frac{1}{1+x_{n+2}}<\frac{1}{x_{n}}=x_{n+1} \quad \text { and } \quad x_{n+3}=\frac{1}{1+x_{n+2}}>\frac{1}{x_{n+1}}=x_{n+2}
$$

If $x_{n+1}<x_{n+2}<x_{n}$, then

$$
x_{n+3}=\frac{1}{1+x_{n+2}}>\frac{1}{x_{n}}=x_{n+1} \quad \text { and } \quad x_{n+3}=\frac{1}{1+x_{n+2}}<\frac{1}{x_{n+1}}=x_{n+2} .
$$

In any case, it follows that if (2) held for some $n \in \mathbb{N}$ then so would

$$
x_{n+1}<x_{n+3}<x_{n+2} \quad \text { or } \quad x_{n+2}<x_{n+3}<x_{n+1} .
$$

1.2. \#17. We simply write it out:

$$
\begin{aligned}
\binom{n}{k-1}+\binom{n}{k} & =\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{k!(n-k)!} \\
& =\frac{k \cdot n!}{k!(n-k+1) \cdot(n-k)!}+\frac{n!}{k!(n-k)!}=\frac{n!}{k!(n-k)!}\left[\frac{k}{n-k+1}+1\right] \\
& =\frac{n!}{k!(n-k)!} \cdot \frac{n+1}{n-k+1} \\
& =\binom{n+1}{k} .
\end{aligned}
$$

1.3. \#8. Recall that " $a>0$ " means that " $a \geq 0$ and $a \neq 0$."

Now suppose $x>0$ and $y>0$. If x and y are rationals, then this is easy: Write $x=n / m$ and $y=k / l$ for $n, m, k, l \in \mathbb{N}$, and hence $x y=(n k) /(m l)$ is the ratio of two natural numbers whence >0. In the general case we can find two rationals p and q such that $x \geq p>0$ and $y \geq q>0$. Thus, $x y \geq p q>0$.
1.3. \#9. If $x>0$ then $x \neq 0$ and so x^{-1} is a well-defined real number [by the construction of \mathbb{R} in this chapter; be sure that you understand that this is not an intuitive statement!]. We are asked to prove that $x^{-1} \neq 0$ and $x^{-1} \geq 0$. Note that $\left(x^{-1}\right)^{-1}=x$ because $x x^{-1}=1$ and the reciprocal of a is defined uniquely for all nonzero $a \in \mathbb{R}$. In particular, $x^{-1} \neq 0$ because x^{-1} has a reciprocal. If it were the case that $x^{-1}<0$, then $1=x x^{-1}$ would be the product of a positive and a negative number, whence negative. But $1>0$.
1.3. $\# 10$. Suppose to the contrary that $y^{-1} \geq x^{-1}$. Then, $1=y y^{-1} \geq y x^{-1}$. Multiply both sides by $x>0$ to see that $x \geq y$, which is a contradiction.
1.3. $\# 11$. By Theorem 1.3.9, if $x^{2}=5$ had a rational positive solution then that solution would have to be an integer. In other words, if $\sqrt{5}$ were rational then $\sqrt{5}$ would have to be an integer. But $2=\sqrt{4}<\sqrt{5}<\sqrt{9}=3$, and there are no integers that lie strictly between 2 and 3 .

