1.1. #2.

1.1. #4.

Math 3210-1, Summer 2016
Solutions to Assignment 1

We are asked to show that the following two propositions are both true:

(a) e AN(BUC)=x€(ANB)U(ANC); and
(b) ze (ANB)U(ANC)=ze€ AN (BUC).

To prove (a) let z € AN(BUC). Then, x € A and x € BUC (by the definition
of “N”). Also, saying that “x € BU C” is the same as saying that “either x € B or
x € C.” In the first case we deduce that x € A and x € B; in the second that x € A
and z € C. In other words, z € (AN B)U (ANC), as desired.

To prove (b) let z € (AN B)U (AN C) and observe that either x € AN B [that is,
x € Aand z € Bl or x € ANC. In either case, x € A and either z € B or z € C.
That is, r € AN (BUCQC).

We claim that the answer is [0, 1]. That is, we claim that

((a.b)=[0,1].

a<0

b>1
If x € [0,1] then 0 <z <1 whence a < x < b for every a < 0 and b > 1. It follows
that [0,1] C (a,b) for all a < 0 and b > 1, whence

0,1] ¢ ((a,b).
a<0
b>1
In order to complete the proof, we establish the converse inclusion. By contraposition,
we plan to verify that
rg[0,1]=a¢()(a,b) (1)

a<0
b>1

If x ¢ [0,1] then either < 0 or > 1. On one hand, if < 0, then we can find an
open interval (a,b) that includes [0, 1] but does not contain x. For example, a could
be x — 1 and b could be 2. On the other hand, if z > 1 then we can still find an open
interval (a,b) that includes [0, 1] but does not contain x. For example, a could be —1
and b could be x + 1. In either case, we see that if ¢ [0, 1] then z is not in (a,b) for
some a < 0 and b > 1. This proves (1).



1.1. #5. We claim that
(la. b =(0,1).

a<0
b>1

If z€(0,1), then z € [a,b] for all @ <0 and b > 1, and hence

(la.b] > (0,1).

On the other hand, if z ¢ (0,1), then = ¢ [a,b] for some a < 0 and b > 0 for the
following reason: If z <0, then x ¢ [x/2,1]; and if x > 1 then = & [0, (z + 1)/2].

1.1. #13. Let f : R = R be f(z) := 2? for all x € R. Set ¥ = [~1,1] and F = [0,1]. Then,
f(E) = f(F) = [0, 1]—in particular, f(E)\ f(F) = @—and f(E\ F) = f([-1,0]) =
0,1] # @.

1.2. #2. First consider the case that n = 1. In that case, we are tasked to prove that m+1 # 1
for all m € N. But this is a part of the construction of the natural numbers.

Next (induction hypothesis) assume that m-+n # n for some n € N and all m € N. We
need to prove that m + (n + 1) # n + 1. Subtract one from both sides to see that our
goal is to prove that m + n # n, which is a consequence of the induction hypothesis.

1.2. #14. First of all, 1 = 1, 25 = %, and z3 = %; therefore, x3 falls between z; and x,. This
is the base case. Now set up the induction hypothesis: Suppose z,.o lies between x,,

and 1. That is,
Tp < Tpyo < Tpyp1 OF Tpig < Tpyo < Ty (2)

If x, < x40 < x,49, then

1 - 1 d 1 - 1
FE —— = Tpy1 AL Tn+3 = = Tn+2-
I+ Tni2 Tn " " 1+ Tnt2 Tnt1 "

Tpy3 =

If 2,01 < 40 < x,, then

1 - 1 d 1 - 1
T L. - o T Tapr DA Tpg3 = = Tn42-
1 + Tn+2 Tn " " 1 + Tn42 Tn+1 "

Tn43 =

In any case, it follows that if (2) held for some n € N then so would

Tn+1 < Tn+3 < Tp4o O Tn+2 < Tn+3 < Tp41-

1.2. #17. We simply write it out:

n n n! n!
(k—l) * <k> T G- Dkt D Bk
k-n! n! n! k
TRkt =R Hn—k K=k [
B n! n+1
T kE(m—k)! n—k+1

-(")




1.3. #8.

1.3. #9.

1.3. #10.

1.3. #11.

Recall that “a > 0” means that “a > 0 and a # 0.”

Now suppose z > 0 and y > 0. If z and y are rationals, then this is easy: Write
x =n/m and y = k/l for n,m,k,| € N, and hence zy = (nk)/(ml) is the ratio of two
natural numbers whence > 0. In the general case we can find two rationals p and ¢
such that x > p > 0 and y > ¢ > 0. Thus, xy > pq > 0.

If z > 0 then x # 0 and so 7! is a well-defined real number [by the construction of R in
this chapter; be sure that you understand that this is not an intuitive statement!]. We
are asked to prove that 7! # 0 and 27! > 0. Note that (z7')~' = x because zz~! = 1
and the reciprocal of a is defined uniquely for all nonzero a € R. In particular, x7! # 0
because x7! has a reciprocal. If it were the case that 27! < 0, then 1 = z2~! would
be the product of a positive and a negative number, whence negative. But 1 > 0.

Suppose to the contrary that y=* > 27!, Then, 1 = yy~! > yz~!. Multiply both sides
by x > 0 to see that x > y, which is a contradiction.

By Theorem 1.3.9, if 22 = 5 had a rational positive solution then that solution would
have to be an integer. In other words, if /5 were rational then v/5 would have to be
an integer. But 2 = Va4 < V6 <9 = 3, and there are no integers that lie strictly
between 2 and 3.



