
Math 3210–1, Summer 2016
Solutions to Assignment 1

1.1. #2. We are asked to show that the following two propositions are both true:

(a) x ∈ A ∩ (B ∪ C)⇒ x ∈ (A ∩B) ∪ (A ∩ C); and

(b) x ∈ (A ∩B) ∪ (A ∩ C)⇒ x ∈ A ∩ (B ∪ C).

To prove (a) let x ∈ A ∩ (B ∪ C). Then, x ∈ A and x ∈ B ∪ C (by the definition
of “∩”). Also, saying that “x ∈ B ∪ C” is the same as saying that “either x ∈ B or
x ∈ C.” In the first case we deduce that x ∈ A and x ∈ B; in the second that x ∈ A
and x ∈ C. In other words, x ∈ (A ∩B) ∪ (A ∩ C), as desired.

To prove (b) let x ∈ (A ∩ B) ∪ (A ∩ C) and observe that either x ∈ A ∩ B [that is,
x ∈ A and x ∈ B] or x ∈ A ∩ C. In either case, x ∈ A and either x ∈ B or x ∈ C.
That is, x ∈ A ∩ (B ∪ C).

1.1. #4. We claim that the answer is [0 , 1]. That is, we claim that⋂
a<0
b>1

(a , b) = [0 , 1].

If x ∈ [0 , 1] then 0 ≤ x ≤ 1 whence a < x < b for every a < 0 and b > 1. It follows
that [0 , 1] ⊂ (a , b) for all a < 0 and b > 1, whence

[0 , 1] ⊂
⋂
a<0
b>1

(a , b).

In order to complete the proof, we establish the converse inclusion. By contraposition,
we plan to verify that

x 6∈ [0 , 1]⇒ x 6∈
⋂
a<0
b>1

(a , b). (1)

If x 6∈ [0 , 1] then either x < 0 or x > 1. On one hand, if x < 0, then we can find an
open interval (a , b) that includes [0 , 1] but does not contain x. For example, a could
be x− 1 and b could be 2. On the other hand, if x > 1 then we can still find an open
interval (a , b) that includes [0 , 1] but does not contain x. For example, a could be −1
and b could be x + 1. In either case, we see that if x 6∈ [0 , 1] then x is not in (a , b) for
some a < 0 and b > 1. This proves (1).
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1.1. #5. We claim that ⋂
a≤0
b≥1

[a , b] = (0 , 1).

If x ∈ (0 , 1), then x ∈ [a , b] for all a ≤ 0 and b ≥ 1, and hence⋂
a≤0
b≥1

[a , b] ⊃ (0 , 1).

On the other hand, if x 6∈ (0 , 1), then x 6∈ [a , b] for some a ≤ 0 and b ≥ 0 for the
following reason: If x ≤ 0, then x 6∈ [x/2 , 1]; and if x ≥ 1 then x 6∈ [0 , (x + 1)/2].

1.1. #13. Let f : R → R be f(x) := x2 for all x ∈ R. Set E = [−1 , 1] and F = [0 , 1]. Then,
f(E) = f(F ) = [0 , 1]—in particular, f(E) \ f(F ) = ∅—and f(E \ F ) = f([−1 , 0]) =
[0 , 1] 6= ∅.

1.2. #2. First consider the case that n = 1. In that case, we are tasked to prove that m+ 1 6= 1
for all m ∈ N. But this is a part of the construction of the natural numbers.

Next (induction hypothesis) assume that m+n 6= n for some n ∈ N and all m ∈ N. We
need to prove that m + (n + 1) 6= n + 1. Subtract one from both sides to see that our
goal is to prove that m + n 6= n, which is a consequence of the induction hypothesis.

1.2. #14. First of all, x1 = 1, x2 = 1
2
, and x3 = 2

3
; therefore, x3 falls between x1 and x2. This

is the base case. Now set up the induction hypothesis: Suppose xn+2 lies between xn

and xn+1. That is,

xn < xn+2 < xn+1 or xn+1 < xn+2 < xn. (2)

If xn < xn+2 < xn+2, then

xn+3 =
1

1 + xn+2

<
1

xn

= xn+1 and xn+3 =
1

1 + xn+2

>
1

xn+1

= xn+2.

If xn+1 < xn+2 < xn, then

xn+3 =
1

1 + xn+2

>
1

xn

= xn+1 and xn+3 =
1

1 + xn+2

<
1

xn+1

= xn+2.

In any case, it follows that if (2) held for some n ∈ N then so would

xn+1 < xn+3 < xn+2 or xn+2 < xn+3 < xn+1.

1.2. #17. We simply write it out:(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
k · n!

k!(n− k + 1) · (n− k)!
+

n!

k!(n− k)!
=

n!

k!(n− k)!

[
k

n− k + 1
+ 1

]
=

n!

k!(n− k)!
· n + 1

n− k + 1

=

(
n + 1

k

)
.
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1.3. #8. Recall that “a > 0” means that “a ≥ 0 and a 6= 0.”

Now suppose x > 0 and y > 0. If x and y are rationals, then this is easy: Write
x = n/m and y = k/l for n,m, k, l ∈ N, and hence xy = (nk)/(ml) is the ratio of two
natural numbers whence > 0. In the general case we can find two rationals p and q
such that x ≥ p > 0 and y ≥ q > 0. Thus, xy ≥ pq > 0.

1.3. #9. If x > 0 then x 6= 0 and so x−1 is a well-defined real number [by the construction of R in
this chapter; be sure that you understand that this is not an intuitive statement!]. We
are asked to prove that x−1 6= 0 and x−1 ≥ 0. Note that (x−1)−1 = x because xx−1 = 1
and the reciprocal of a is defined uniquely for all nonzero a ∈ R. In particular, x−1 6= 0
because x−1 has a reciprocal. If it were the case that x−1 < 0, then 1 = xx−1 would
be the product of a positive and a negative number, whence negative. But 1 > 0.

1.3. #10. Suppose to the contrary that y−1 ≥ x−1. Then, 1 = yy−1 ≥ yx−1. Multiply both sides
by x > 0 to see that x ≥ y, which is a contradiction.

1.3. #11. By Theorem 1.3.9, if x2 = 5 had a rational positive solution then that solution would
have to be an integer. In other words, if

√
5 were rational then

√
5 would have to be

an integer. But 2 =
√

4 <
√

5 <
√

9 = 3, and there are no integers that lie strictly
between 2 and 3.
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