Math 3210-1, Midterm 3

Thursday July 14, 2016

Name: _____

This exams is comprised of 4 questions, on 4 pages, and for a total of 50 points.

1. (10 points) Define $f(x) = \sqrt{x}$ for all $x \in (0, 1)$. Is f uniformly continuous?

Solution. Yes. Here is one way to reason this fact: If $0 < x, y \le 1$ then

$$x - y = \left(\sqrt{x} - \sqrt{y}\right)\left(\sqrt{x} + \sqrt{y}\right)$$

Therefore,

$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}.$$

The same identity holds if one—but not both—of x and y are zero. Therefore, for every $x \in [0, 1]$, we have $\lim_{y\to x} \sqrt{y} = \sqrt{x}$. In other words, $f(x) = \sqrt{x}$ —viewed as a function on the closed and bounded interval [0, 1]—is continuous. In particular, \sqrt{x} —viewed as a function on the open interval (0, 1)—has a continuous extension to [0, 1] and is therefore uniformly continuous on (0, 1) by one of the theorems that we proved earlier in the lectures.

2. (10 points) Let $f:[0,1] \to \mathbb{R}$ be a function that satisfies

$$f(0) = 5$$
 and $|f(x) - f(y)| \le |x - y|^2$ $\forall x, y \in [0, 1].$

Compute f(x) for every $x \in [0, 1]$. (Hint: What is f'?)

Solution. For every $x \in (0, 1)$,

$$\left|\frac{f(x+h) - f(x)}{h}\right| \le h \to 0 \qquad \text{as } h \to 0.$$

Therefore, f is differentiable on (0, 1) and f'(x) = 0 for all $x \in (0, 1)$. By the meanvalue theorem, f is a constant on (0, 1). On the other hand, f is continuous on [0, 1]. Therefore, f is a constant on [0, 1]. Since f(0) = 5 it follows that f(x) = 5 for all $x \in [0, 1]$. 3. (10 points) Prove that $|\cos^2(x) - \cos^2(y)| \le 2|x - y|$ for all $x, y \in \mathbb{R}$.

Solution. $|\cos^2(x) - \cos^2(y)| = |\cos x - \cos y| |\cos x + \cos y|$. By the triangle inequality, $|\cos x + \cos y| \le |\cos x| + |\cos y| \le 2$. Therefore, it remains to prove that $|\cos x - \cos y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

Without loss of generality, suppose x < y. Then, the mean-value theorem ensures that there exists $c \in (x, y)$ such that

$$\frac{\cos y - \cos x}{y - x} = -\sin c.$$

Since $|-\sin c| \le 1$, this proves that $|\cos x - \cos y| \le |x - y|$ and concludes the proof.

- 4. (20 points total) Let $\alpha > 0$ be fixed.
 - (a) (10 points) Prove that if $\alpha \leq 1$, then

$$(1+x)^{\alpha} \le 1 + \alpha x \qquad \forall x \ge 0.$$

(b) (10 points) Prove that if $\alpha > 1$, then

$$(1+x)^{\alpha} > 1 + \alpha x \qquad \forall x \ge 0.$$

Solution. There are certain, special, values of α for which the problem is easy to verify directly. For instance if $\alpha = 1$ then there is nothing to prove. Or, for that matter, when $\alpha = 2$ we have

$$(1+x)^{\alpha} = (1+x)^2 = 1 + 2x + x^2 \ge 1 + 2x \quad \forall x \ge 0.$$

We are asked to study the problem for general α , however.

Define

$$f(x) = (1+x)^{\alpha} - \alpha x \qquad \forall x \ge 0.$$

Then f is differentiable on $(0, \infty)$ and continuous on [0, 1]; moreover,

$$f'(x) = \alpha (1+x)^{\alpha-1} - \alpha \qquad \forall x > 0.$$

If $\alpha \in (0,1]$, then $(1+x)^{\alpha-1} \leq 1$, whence $f'(x) \leq 0$ for all x > 0. In particular, $f(x) \leq f(0) = 1$ for all x. This proves (a).

Conversely, if $\alpha > 1$ then $(1+x)^{\alpha-1} > 1$, whence f'(x) > 0 for all x > 0. In particular, $f(x) \ge f(0) = 1$ for all x. This proves (b).