Math 3210–1, Summer 2016 Solutions to Assignment 9

5.1. #1. Here, $x_0 = 1$, $x_1 = \frac{5}{4}$, $x_2 = \frac{3}{2}$, $x_3 = \frac{7}{4}$, and $x_4 = 2$. Because f is decreasing, $m_1 = \inf_{x \in [1,5/4]}(1/x) = \frac{4}{5}$, $m_2 = \inf_{x \in [5/4,3/2]}(1/x) = \frac{2}{3}$, $m_3 = \inf_{x \in [3/2,7/4]}(1/x) = \frac{4}{7}$, and $m_4 = \inf_{x \in [7/4,2]}(1/x) = \frac{1}{2}$. Because $x_k - x_{k-1} = \frac{1}{4}$ for all k, this implies that

$$L(f, P) = \frac{m_1 + \dots + m_4}{4} = \frac{1}{4} \left[\frac{4}{5} + \frac{2}{3} + \frac{4}{7} + \frac{1}{2} \right]$$

Similarly, $M_1 = \sup_{x \in [1,5/4]} (1/x) = 1$, $M_2 = \sup_{x \in [5/4,3/2]} (1/x) = \frac{4}{5}$, $M_3 = \sup_{x \in [3/2,7/4]} (1/x) = \frac{2}{3}$, and $M_4 = \sup_{x \in [7/4,2]} (1/x) = \frac{4}{7}$. Therefore,

$$U(f,P) = \frac{M_1 + \dots + M_4}{4} = \frac{1}{4} \left[1 + \frac{4}{5} + \frac{2}{3} + \frac{4}{7} \right].$$

5.1. #5. Consider an arbitrary partition $P = \{x_0, \ldots, x_n\}$ of [0, 1], where as usual we write $0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1$. Because $[x_{k-1}, x_k]$ contains rationals and irrationals for all k, it follows that $M_k = 1$ and $m_k = 0$ for all k. This implies that

$$U(f, P) = \sum_{k=1}^{n} (x_k - x_{k-1}) = x_n - x_0 = 1,$$

because of properties of telescoping sums. Similarly,

$$L(f, P) = 0.$$

Since U(f, P) - L(f, P) = 1 for all partitions P, Theorem 5.1.7 implies that f is not integrable on [0, 1].

5.1. #9. Let P be an arbitrary partition of [a, b]. Since $M_i = m_i = k$ for all i = 1, ..., n,

$$U(f, P) = \sum_{i=1}^{n} k(x_i - x_{i-1}) = k(b - a),$$

using properties of telescoping sums. Similarly, L(f, P) = k(b-a). Because $U(f, P) - L(f, P) = 0 < \varepsilon$ for all $\varepsilon > 0$, Theorem 5.1.7 implies that f is integrable and $\int_a^b f = k(b-a)$.

5.2. #9. Let $M := \sup_{x \in [a,b]} |f(x)|$. Since $f^2(x) - f^2(y) = (f(x) - f(y))(f(x) + f(y))$ for all $x, y \in [a, b]$, it follows that

$$\left| f^{2}(x) - f^{2}(y) \right| \leq \left\{ |f(x)| + |f(y)| \right\} |f(x) - f(y)| \leq 2M |f(x) - f(y)|.$$

Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b] as before. For every $k = 1, \ldots, n$ we can find a sequence x_1, x_2, \ldots —depending on k—such that $\lim_{j\to\infty} f(x_j) = \sup_{x\in[x_{k-1},x_k]} f(x) = M_k(f)$ and a sequence y_1, y_2, \ldots —depending on k—such that $\lim_{j\to\infty} f(y_j) = m_k(f)$. Now,

$$\left|f^2(x_j) - f^2(y_j)\right| \le 2M|f(x_j) - f(y_j)| \qquad \forall j$$

The right-hand side converges to $M_k(f) - m_k(f)$ as $j \to \infty$. The left-hand side converges to $M_k(f^2) - m_k(f^2)$ since f^2 is maximized and/or minimized where f is. [This is because $g(z) := z^2$ is increasing.] In this way we find that

$$M_k(f^2) - m_k(f^2) \le 2M [M_k(f) - m_k(f)] \quad \forall k = 1, ..., n.$$

Therefore,

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{k=1}^{n} \left(M_{k}(f^{2}) - m_{k}(f^{2}) \right) (x_{k} - x_{k-1})$$

$$\leq 2M \sum_{k=1}^{n} \left(M_{k}(f) - m_{k}(f) \right) (x_{k} - x_{k-1})$$

$$= 2M \left[U(f, P) - L(f, P) \right].$$

By Theorem 5.1.7 for every $\varepsilon > 0$ we can find a partition P of [a, b] such that $U(f, P) - L(f, P) \leq \varepsilon/(2M)$. The preceding implies that, for the same (ε, P) , $U(f^2, P) - L(f^2, P) \leq \varepsilon$. A second appeal to Theorem 5.1.7 shows that f^2 is integrable.

5.2. #10. Because $(f + g)^2 = f^2 + 2fg + g^2$,

$$fg = \frac{1}{2} \left[(f+g)^2 - f^2 - g^2 \right].$$

By the previous exercise, the right-hand side is integrable. Therefore, so is the left-hand side.