
Math 3210–1, Summer 2016
Solutions to Assignment 7

4.3. #1. We appeal to the mean-value theorem: First, there exists a ∈ (−1 , 0) such that

f ′(a) =
f(0)− f(−1)

0− (−1)
= 0.

Next, there exists b ∈ (−1 , 1) such that

f ′(b) =
f(1)− f(−1)

1− (−1)
=

1

2
.

Finally, there exists c ∈ (0 , 1) such that

f ′(c) =
f(1)− f(0)

1− 0
= 1.

4.3. #2. Let f(z) = sin z. Since f ′(z) = cos z for all z ∈ R, it follows from the mean-value
theorem that for all x < y there exists c ∈ (x , y) such that

cos(c) = f ′(c) =
f(y)− f(x)

y − x
=

sin(y)− sin(x)

y − x
.

Since | cos(c)| ≤ 1, it follows that | sin(y)− sin(x)| ≤ |y − x|.

4.3. #3. If y = x then the assertion holds trivially because indeed 0 ≤ 0. Therefore, we
may assume that y > x > 0.

Let f(z) = ln z for all z > 0, and recall that f ′(z) = 1/z for all z > 0. For every
0 < x < y, there exists c ∈ (x , y) such that

1

c
= f ′(c) =

f(y)− f(x)

y − x
=

ln y − lnx

y − x
.

Therefore,

ln y − lnx =
y − x
c
≤ y − x

r
,

for every 0 < r < c including 0 < r ≤ x.
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4.3. #4. For every 0 ≤ y < x there exists c ∈ (y , x) such that

M ≥ |f ′(c)| = |f(x)− f(y)|
x− y

⇒ |f(x)− f(y)| ≤M(y − x).

Let y → 0+ to see from the continuity of f on [0 ,∞) — and from the continuity of
g(y) := x − y on [0 ,∞) — that |f(x)| ≤ Mx for all x > 0. The inequality holds
trivially when x = 0 as well.

4.3. #5. Let A = limx→∞ f(x) and B = limx→∞ f
′(x). For every ε > 0 there exists Nε ∈ N

such that for every a ≥ Nε:

(a) A− ε ≤ f(a) ≤ A+ ε; and
(b) B − ε ≤ f ′(a) ≤ B + ε.

Choose and fix an arbitrary ε > 0. For all y > x > Nε, there exists c ∈ (x , y) such
that

f ′(c) =
f(y)− f(x)

y − x
.

Since y and x both exceed Nε, it follows from the triangle inequality that

|f(y)− f(x)| ≤ |f(y)− A|+ |f(x)− A| ≤ 2ε.

And since c > Nε, f
′(c) ≥ B − ε. Combine to see that

B − ε ≤ 2ε

y − x
for all y > x > Nε. (1)

Similarly,
2ε

y − x
≤ B + ε for all y > x > Nε. (2)

On one hand, (2) implies that B+ε > 0, equivalently, B > −ε. Since ε were arbitrary,
it follows that B ≥ 0. On the other hand, we can let y → ∞ in (1) to see that
B − ε ≤ 0, equivalently B ≤ ε, whence B ≤ 0. Combine to conclude that B = 0.

4.3. #6. f ′(x) = 6x2 +6x−12 = 6(x2 +x−2) = 6(x−1)(x+2). If x < −2, then f ′(x) > 0;
if x ∈ (−2 , 1), then f ′(x) < 0; and if x ∈ (1 ,∞), then f ′(x) > 0. Therefore, f is
increasing on (−∞ ,−2) and on (1 ,∞), whereas f is decreasing on (−2 , 1).

4.3. #7. Let f(x) = x−1− lnx for x > 0, and observe that f ′(x) = 1− (1/x) for all x > 0.
If x < 1, then f ′(x) < 0; if x > 1, then f ′(x) > 0. Therefore, f is decreasing on (0 , 1)
and increasing on (1 ,∞). In other words, f(x) > f(1) = 0 for all x > 0 that satisfy
x 6= 1. This proves the stronger inequality that lnx < x− 1 for all x > 0 that satisfy
x 6= 1 [of course, lnx = x− 1 for x = 1].

4.3. #8. Let f(x) = e−xxe for all x ≥ 0. Then, f is continuous on [0 ,∞) and differentiable
on (0 ,∞) with derivative

f ′(x) = −e−xxe + e−xexe−1 = e−xxe−1(x− e) ∀x > 0.

This shows that f is increasing on (e ,∞) and decreasing on (0 , e). In particular,
f(x) > f(e) = 1 for all x > 0 that satisfy x 6= e. In particular, f(π) > 1, equivalently,
πe > eπ.
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4.3. #13. Here is a variation of 4.3.4: If f : R → R is differentiable and its derivative is
bounded uniformly by some finite constant M ≥ 0 then |f(x) − f(y)| ≤ M |y − x| for
all x, y ∈ R. The proof is just the same as the proof of 4.3.4: For every y > x there
exists c ∈ (x , y) such that

M ≥ |f ′(c)| = |f(y)− f(x)|
y − x

⇒ |f(y)− f(x)| ≤M |y − x|. (3)

Since the roles of x and y are interchangeable, then same inequality holds also when
x > y; and the inequality holds trivially when x = y [0 ≤ 0].

Now, let us assume that M := r < 1, so that f is a contraction mapping. Let x0 := 0
[say] and having defined x0, . . . , xn define xn+1 := f(xn), inductively. Then,

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ r|xn − xn−1| ∀n ≥ 1.

Thus, |x2 − x1| ≤ r|x1 − x0| := Cr, |x3 − x2| ≤ r|x2 − x1| ≤ Cr2, |x4 − x3| ≤ Cr3, . . . .
By induction,

|xn+1 − xn| ≤ Crn ∀n ≥ 0. (4)

Next we note that x1 = x0 + (x1− x0) = (x1− x0) =
∑0

j=0(xj+1− xj), x2 = x0 + (x1−
x0) + (x2 − x1) =

∑1
j=0(xj+1 − xj), etc. By induction,

xn+1 =
n∑
j=0

(xj+1 − xj) ∀n ≥ 0. (5)

Observe that (4) and (5) together imply that |xn+1| ≤
∑∞

j=0 |xj+1−xj| ≤ C
∑∞

j=0 r
j =

C/(1 − r) for all n ≥ 0. Therefore, {xn}∞n=0 is a bounded sequence. By the Bolzano–
Weierstrass theorem there exists a subsequence xn1 , xn2 , . . . and a number x ∈ R such
that limk→∞ xnk

= x. Because

xnk+1
= f(xnk

) ∀k ≥ 0, (6)

we can let k →∞ to see that the left-hand side converges to x and the right-hand side
converges to f(x) [by continuity]. We have thus shown that there exists a number x
that satisfies x = f(x); this x is a fixed point of f .

4.3. #16. Let f(x) := ln x for all x > 0 and recall that f ′(x) = 1/x. Since |f ′(x)| ≤ 1 for
all x ≥ 1, the same argument that led to (3) shows us that

|f(x)− f(y)| ≤ |x− y| ∀x, y ≥ 1.

In particular, for every ε > 0, whenever x, y ∈ [1 ,∞) satisfy |x − y| < δ := ε/2, we
have |f(x) − f(y)| < ε. Therefore, f is uniformly continuous on [1 ,∞). However,
since f is unbounded on (0 , 1), f cannot have a continuous extension to [0 , 1]; this
is because every continuous function on [0 , 1] is necessarily bounded. We have thus
shown that f(x) = ln x is not uniformly continuous on (0 , 1).
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