Math 3210–1, Summer 2016 Solutions to Assignment 7

4.3. #1. We appeal to the mean-value theorem: First, there exists $a \in (-1, 0)$ such that

$$f'(a) = \frac{f(0) - f(-1)}{0 - (-1)} = 0.$$

Next, there exists $b \in (-1, 1)$ such that

$$f'(b) = \frac{f(1) - f(-1)}{1 - (-1)} = \frac{1}{2}$$

Finally, there exists $c \in (0, 1)$ such that

$$f'(c) = \frac{f(1) - f(0)}{1 - 0} = 1$$

4.3. #2. Let $f(z) = \sin z$. Since $f'(z) = \cos z$ for all $z \in \mathbb{R}$, it follows from the mean-value theorem that for all x < y there exists $c \in (x, y)$ such that

$$\cos(c) = f'(c) = \frac{f(y) - f(x)}{y - x} = \frac{\sin(y) - \sin(x)}{y - x}.$$

Since $|\cos(c)| \le 1$, it follows that $|\sin(y) - \sin(x)| \le |y - x|$.

4.3. #3. If y = x then the assertion holds trivially because indeed $0 \le 0$. Therefore, we may assume that y > x > 0.

Let $f(z) = \ln z$ for all z > 0, and recall that f'(z) = 1/z for all z > 0. For every 0 < x < y, there exists $c \in (x, y)$ such that

$$\frac{1}{c} = f'(c) = \frac{f(y) - f(x)}{y - x} = \frac{\ln y - \ln x}{y - x}$$

Therefore,

$$\ln y - \ln x = \frac{y - x}{c} \le \frac{y - x}{r},$$

for every 0 < r < c including $0 < r \le x$.

4.3. #4. For every $0 \le y < x$ there exists $c \in (y, x)$ such that

$$M \ge |f'(c)| = \frac{|f(x) - f(y)|}{x - y} \quad \Rightarrow \quad |f(x) - f(y)| \le M(y - x).$$

Let $y \to 0^+$ to see from the continuity of f on $[0, \infty)$ — and from the continuity of g(y) := x - y on $[0, \infty)$ — that $|f(x)| \leq Mx$ for all x > 0. The inequality holds trivially when x = 0 as well.

- **4.3.** #5. Let $A = \lim_{x\to\infty} f(x)$ and $B = \lim_{x\to\infty} f'(x)$. For every $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for every $a \ge N_{\varepsilon}$:
 - (a) $A \varepsilon \leq f(a) \leq A + \varepsilon$; and
 - (b) $B \varepsilon \leq f'(a) \leq B + \varepsilon$.

Choose and fix an arbitrary $\varepsilon > 0$. For all $y > x > N_{\varepsilon}$, there exists $c \in (x, y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x}$$

Since y and x both exceed N_{ε} , it follows from the triangle inequality that

$$|f(y) - f(x)| \le |f(y) - A| + |f(x) - A| \le 2\varepsilon.$$

And since $c > N_{\varepsilon}$, $f'(c) \ge B - \varepsilon$. Combine to see that

$$B - \varepsilon \le \frac{2\varepsilon}{y - x}$$
 for all $y > x > N_{\varepsilon}$. (1)

Similarly,

$$\frac{2\varepsilon}{y-x} \le B + \varepsilon \qquad \text{for all } y > x > N_{\varepsilon}.$$
⁽²⁾

On one hand, (2) implies that $B + \varepsilon > 0$, equivalently, $B > -\varepsilon$. Since ε were arbitrary, it follows that $B \ge 0$. On the other hand, we can let $y \to \infty$ in (1) to see that $B - \varepsilon \le 0$, equivalently $B \le \varepsilon$, whence $B \le 0$. Combine to conclude that B = 0.

- **4.3.** #6. $f'(x) = 6x^2 + 6x 12 = 6(x^2 + x 2) = 6(x 1)(x + 2)$. If x < -2, then f'(x) > 0; if $x \in (-2, 1)$, then f'(x) < 0; and if $x \in (1, \infty)$, then f'(x) > 0. Therefore, f is increasing on $(-\infty, -2)$ and on $(1, \infty)$, whereas f is decreasing on (-2, 1).
- **4.3.** #7. Let $f(x) = x 1 \ln x$ for x > 0, and observe that f'(x) = 1 (1/x) for all x > 0. If x < 1, then f'(x) < 0; if x > 1, then f'(x) > 0. Therefore, f is decreasing on (0, 1) and increasing on $(1, \infty)$. In other words, f(x) > f(1) = 0 for all x > 0 that satisfy $x \neq 1$. This proves the stronger inequality that $\ln x < x - 1$ for all x > 0 that satisfy $x \neq 1$ [of course, $\ln x = x - 1$ for x = 1].
- **4.3.** #8. Let $f(x) = e^{-x}x^e$ for all $x \ge 0$. Then, f is continuous on $[0, \infty)$ and differentiable on $(0, \infty)$ with derivative

$$f'(x) = -e^{-x}x^{e} + e^{-x}ex^{e-1} = e^{-x}x^{e-1}(x-e) \qquad \forall x > 0$$

This shows that f is increasing on (e, ∞) and decreasing on (0, e). In particular, f(x) > f(e) = 1 for all x > 0 that satisfy $x \neq e$. In particular, $f(\pi) > 1$, equivalently, $\pi^e > e^{\pi}$.

4.3. #13. Here is a variation of 4.3.4: If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and its derivative is bounded uniformly by some finite constant $M \ge 0$ then $|f(x) - f(y)| \le M|y - x|$ for all $x, y \in \mathbb{R}$. The proof is just the same as the proof of 4.3.4: For every y > x there exists $c \in (x, y)$ such that

$$M \ge |f'(c)| = \frac{|f(y) - f(x)|}{y - x} \implies |f(y) - f(x)| \le M|y - x|.$$
 (3)

Since the roles of x and y are interchangeable, then same inequality holds also when x > y; and the inequality holds trivially when x = y $[0 \le 0]$.

Now, let us assume that M := r < 1, so that f is a contraction mapping. Let $x_0 := 0$ [say] and having defined x_0, \ldots, x_n define $x_{n+1} := f(x_n)$, inductively. Then,

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le r|x_n - x_{n-1}| \qquad \forall n \ge 1.$$

Thus, $|x_2 - x_1| \le r |x_1 - x_0| := Cr$, $|x_3 - x_2| \le r |x_2 - x_1| \le Cr^2$, $|x_4 - x_3| \le Cr^3$, By induction,

$$|x_{n+1} - x_n| \le Cr^n \qquad \forall n \ge 0.$$
(4)

Next we note that $x_1 = x_0 + (x_1 - x_0) = (x_1 - x_0) = \sum_{j=0}^{0} (x_{j+1} - x_j), x_2 = x_0 + (x_1 - x_0) + (x_2 - x_1) = \sum_{j=0}^{1} (x_{j+1} - x_j)$, etc. By induction,

$$x_{n+1} = \sum_{j=0}^{n} (x_{j+1} - x_j) \qquad \forall n \ge 0.$$
(5)

Observe that (4) and (5) together imply that $|x_{n+1}| \leq \sum_{j=0}^{\infty} |x_{j+1} - x_j| \leq C \sum_{j=0}^{\infty} r^j = C/(1-r)$ for all $n \geq 0$. Therefore, $\{x_n\}_{n=0}^{\infty}$ is a bounded sequence. By the Bolzano–Weierstrass theorem there exists a subsequence x_{n_1}, x_{n_2}, \ldots and a number $x \in \mathbb{R}$ such that $\lim_{k\to\infty} x_{n_k} = x$. Because

$$x_{n_{k+1}} = f(x_{n_k}) \qquad \forall k \ge 0, \tag{6}$$

we can let $k \to \infty$ to see that the left-hand side converges to x and the right-hand side converges to f(x) [by continuity]. We have thus shown that there exists a number x that satisfies x = f(x); this x is a fixed point of f.

4.3. #16. Let $f(x) := \ln x$ for all x > 0 and recall that f'(x) = 1/x. Since $|f'(x)| \le 1$ for all $x \ge 1$, the same argument that led to (3) shows us that

$$|f(x) - f(y)| \le |x - y| \qquad \forall x, y \ge 1.$$

In particular, for every $\varepsilon > 0$, whenever $x, y \in [1, \infty)$ satisfy $|x - y| < \delta := \varepsilon/2$, we have $|f(x) - f(y)| < \varepsilon$. Therefore, f is uniformly continuous on $[1, \infty)$. However, since f is unbounded on (0, 1), f cannot have a continuous extension to [0, 1]; this is because every continuous function on [0, 1] is necessarily bounded. We have thus shown that $f(x) = \ln x$ is not uniformly continuous on (0, 1).