Math 3210-1, Summer 2016
Solutions to Assignment 7

4.3. #1. We appeal to the mean-value theorem: First, there exists a € (—1,0) such that

4.3. #2. Let f(z) =sinz. Since f'(z) = cos z for all z € R, it follows from the mean-value
theorem that for all x < y there exists ¢ € (z,y) such that

cos(c) = f/(c) _ fly) — f(z) o sin(y) — Sin(m)‘

y—x Yy—x

Since | cos(c)| < 1, it follows that |sin(y) — sin(z)| < |y — z|.

4.3. #3. If y = x then the assertion holds trivially because indeed 0 < 0. Therefore, we
may assume that y >z > 0.

Let f(z) = Inz for all z > 0, and recall that f'(z) = 1/z for all z > 0. For every
0 < x <y, there exists ¢ € (z,y) such that

1 = f'(c) = fly) — f(=) _ hly—ln:z:.

c y—x y—x

Therefore,
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4.3. #4. For every 0 < y < z there exists ¢ € (y,x) such that
fx) — fy
w2 | = LI ) - s < vty - o)
Let y — 0% to see from the continuity of f on [0,00) — and from the continuity of

9(y) ==z —y on [0,00) — that [f(z)] < Mz for all z > 0. The inequality holds
trivially when z = 0 as well.

4.3. #5. Let A =lim, ., f(z) and B = lim,_,, f'(z). For every € > 0 there exists N. € N
such that for every a > N.:

(a) A—e < f(a) < A+¢; and
(b) B—e< f'(a) < B+e.

Choose and fix an arbitrary ¢ > 0. For all y > x > N, there exists ¢ € (z,y) such

that

Since y and = both exceed V., it follows from the triangle inequality that

[f(y) = f@) < |f(y) — Al + [f(2) — A] < 2.
And since ¢ > N., f'(c) > B — ¢. Combine to see that

B—-¢e< for all y > x > N.. (1)
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Similarly,
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On one hand, (2) implies that B+¢ > 0, equivalently, B > —e. Since € were arbitrary,
it follows that B > 0. On the other hand, we can let y — oo in (1) to see that
B — ¢ <0, equivalently B < ¢, whence B < (0. Combine to conclude that B = 0.

<B+¢ forall y > 2 > N.. (2)

4.3. #6. f'(z) =622 +6x—12=6(2*>+2—2) =6(z—1)(z+2). If z < —2, then f'(x) > 0;
if v € (—=2,1), then f'(z) < 0; and if x € (1,00), then f'(x) > 0. Therefore, f is
increasing on (—oo, —2) and on (1,00), whereas f is decreasing on (—2,1).

4.3. #7. Let f(x) =x—1—Inz for x > 0, and observe that f'(z) = 1—(1/z) for all x > 0.
If z <1, then f'(z) <0; if x > 1, then f’(z) > 0. Therefore, f is decreasing on (0, 1)
and increasing on (1,00). In other words, f(z) > f(1) = 0 for all x > 0 that satisfy
x # 1. This proves the stronger inequality that Inxz < x — 1 for all x > 0 that satisfy
x # 1 [of course, Inx =z — 1 for z = 1].

4.3. #8. Let f(x) = e “z° for all > 0. Then, f is continuous on [0, c0) and differentiable
on (0,00) with derivative
fl(w) = —e"2°+e "ea® ' =e "2z —e) Vz>0.

This shows that f is increasing on (e,00) and decreasing on (0,e). In particular,
f(x) > f(e) =1 for all x > 0 that satisfy x # e. In particular, f(7) > 1, equivalently,
T > e’



4.3. #13. Here is a variation of 4.3.4: If f : R — R s differentiable and its derivative is
bounded uniformly by some finite constant M > 0 then |f(x) — f(y)| < M|y — z| for
all z,y € R. The proof is just the same as the proof of 4.3.4: For every y > x there
exists ¢ € (z,y) such that

fly) — flz
vz o) = LI oy - o < ay -l
Since the roles of x and y are interchangeable, then same inequality holds also when
x > y; and the inequality holds trivially when z =y [0 < 0].

Now, let us assume that M :=r < 1, so that f is a contraction mapping. Let ¢ := 0
[say] and having defined xy, ..., z, define z,,1 := f(z,), inductively. Then,

|l’n+1 - $n| - |f(xn) - f(xn—1)| < Tll’n - l’n_1| vn > 1.

Thus, |z2 — 21| < rlz; — 20| := COr, |23 — 3| < 7|y — 21| < CP2, |14 — 03] < COF3, .. ..
By induction,
|Tpi1 — x| < CF" Vn > 0. (4)

Next we note that 21 = zo+ (1 — 20) = (1 —20) = Zgzo(scjﬂ —x;), T2 = xo+ (1 —

xg) + (X9 — 1) = Z;:O(a:jﬂ — z;), etc. By induction,

n

Tos1 = (zj—z;)  ¥n >0 (5)

J=0

Observe that (4) and (5) together imply that [z, < 3772 2501 —a;] < C Y2017 =
C/(1 —r) for all n > 0. Therefore, {x,}>°, is a bounded sequence. By the Bolzano—
Weierstrass theorem there exists a subsequence z,,, T,,, ... and a number z € R such
that limy_, 2, = . Because

Ty = f(zn,) Vk >0, (6)

we can let £ — oo to see that the left-hand side converges to  and the right-hand side
converges to f(x) [by continuity]. We have thus shown that there exists a number x
that satisfies x = f(z); this x is a fixed point of f.

4.3. #16. Let f(z) := Inz for all z > 0 and recall that f'(z) = 1/x. Since |f'(x)| < 1 for
all z > 1, the same argument that led to (3) shows us that

f(x) = fW)| <|z—yl Vz,y>1

In particular, for every ¢ > 0, whenever z,y € [1,00) satisfy |z —y| < 0 := £/2, we
have |f(z) — f(y)| < e. Therefore, f is uniformly continuous on [1,00). However,
since f is unbounded on (0,1), f cannot have a continuous extension to [0, 1]; this
is because every continuous function on [0, 1] is necessarily bounded. We have thus
shown that f(x) = Inx is not uniformly continuous on (0,1).



