
Math 3210–1, Summer 2016
Solutions to Assignment 6

3.4. #10. For all n ∈ N and x ∈ (−1 , 1),

sn(x) =
n∑

k=0

xk = 1 + x+ x2 + · · ·+ xn.

According to Problem 9,

sn(x) =
1− xn+1

1− x
. (1)

Here is the reason:

(a) sn+1(x) − sn(x) = xn+1, so that sn+1(x) = sn(x) + xn+1, for all n ∈ N and
x ∈ (−1 , 1);

(b) xsn(x) = x+ · · ·+ xn+1 = sn+1(x)− 1.

Plug (a) into (b) to see that xsn(x) = sn(x) + xn+1 − 1, which we can solve to obtain

(1− x)sn(x) = 1− xn+1,

which is another way to state (1). Now, let us apply (1) to find that

sn(x)− 1

1− x
= − x

n+1

1− x
, therefore

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ =
|x|n+1

1− x
∀n ∈ N, x ∈ (−1 , 1).

Optimize to find that if 0 < r < 1, then

sup
x∈[−r,r]

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ = sup
x∈[−r,r]

|x|n+1

1− x
≤ rn+1 sup

x∈[−r,r]

1

1− x
=

rn+1

1− r
.

[Challenge: Prove that the preceding inequality is in fact an identity.] In any case, it
follows that

lim
r→0+

sup
x∈[−r,r]

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ = lim
r→0+

rn+1

1− r
= 0.

Therefore, sn(x) → (1 − x)−1, uniformly for x ∈ [−r , r], as n → ∞. On the other
hand, the same sort of computation shows that

sup
x∈(−1,1)

∣∣∣∣sn(x)− 1

1− x

∣∣∣∣ = sup
x∈(−1,1)

|x|n+1

1− x
≥ |y|

n+1

1− y
,

for any y ∈ (−1 , 1). By picking y ∈ (−1 , 1) to be arbitrarily close to one, we see that
the preceding is =∞, and hence cannot converge to 0 as n→∞.
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3.4. #12. If n,m ∈ N satisfy n ≥ m, then

sn(x)− sm(x) =
n∑

k=m+1

akx
k ∀x ∈ (−1 , 1).

In particular, for every r ∈ (0 , 1),

sup
x∈[−r,r]

|sn(x)− sm(x)| ≤ sup
x∈[−r,r]

n∑
k=m+1

|ak||x|k,

thanks to the triangle inequality. If x ∈ [−r , r], then |x|k ≤ rk for all k ∈ N. In
particular,

sup
x∈[−r,r]

|sn(x)− sm(x)| ≤ C

n∑
k=m+1

rk ≤ C
∞∑

k=m+1

rk,

where C := supk≥1 |ak| is a finite constant [because the aks are bounded]. Now we
compute the geometric series in question to find that

sup
x∈[−r,r]

|sn(x)− sm(x)| ≤ Crm+1

1− r
.

Since rm+1 → 0 as m→∞, it follows that for all ε > 0 there exists Nε ∈ N such that
rm+1 ≤ ε for all m > Nε. Choose and fix an arbitrary ε > 0 to see that

sup
x∈[−r,r]

|sn(x)− sm(x)| ≤ Cε

1− r
∀m,n ∈ N s.t. n ≥ m > Nε.

This implies that {sn}∞n=1 is uniformly Cauchy on [−r , r]. Since sn is a polynomial,
it is continuous on (−1 , 1) for every n ∈ N. Therefore, Theorems 3.4.4 and 3.4.10
together imply that s(x) := limn→∞ sn(x) exists for all x ∈ [−r , r] and is a continuous
function. Since this is true for every r ∈ (0 , 1), s exists and is continuous for every
x ∈ (−1 , 1).

4.1. #8. Suppose to the contrary that L+ := limx→0+ f(x) exists. It would then follow that
L = limn→∞ f(xn) for every strictly decreasing positive sequence {xn}∞n=1 such that
xn → 0. But this is not so. For instance, xn := 2/(πn) defines a strictly decreasing
sequence that converges to zero, yet f(xn) = sin(πn/2) is infinitely often ±1 and
infinitely often zero, so there is no limit. By using −xn we see that limx→0− f(x) also
doesn’t exist.

4.1. #9. Here,

f(x) =

{
−x if x < 0,

sin(x) if x > 0.

Then limx→0− f(x) = limx→0−(−x) = 0 and limx→0+ f(x) = limx→0+ sin(x) = 0. The
two limits agree, therefore, limx→0 f(x) = 0 by Theorem 4.1.7.
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4.1. #13. Let {xn}n∈N be a sequence of numbers in (a , b) such that xn < xn+1 for all n ≥ 1
and limn→∞ xn = a. Then {f(xn)}n∈N is a bounded, strictly decreasing sequence. By
Theorem 2.4.6,

L := lim
n→∞

f(xn)

exists. Since f is bounded, L is a real number; that is L ∈ R, equiv. L 6∈ {−∞ ,∞}.
By the definition of limits, for every ε > 0 there exists Nε ∈ N such that

|f(xn)− L| < ε ∀n > Nε.

Choose and fix an arbitrary ε > 0. If n > Nε and x < xn, there exists m > n such
that x ∈ (xm+1 , xm), which in turn implies that

f(xm+1) ≤ f(x) ≤ f(xm).

Because m > n > Nε, f(xm+1) > L− ε and f(xm) < L+ ε. This proves that if n > Nε

and x ∈ (a , xn), then |f(x) − L| < ε. This proves that limx→a+ f(x) = L. The same
sort of argument can be used to prove that limx→a− f(x) exists and is a real number.
I will leave the details to you.

4.2. #1.

f(x+ h)− f(x)

h
=

1

h

(
1

x+ h
− 1

x

)
=

−1

x(x+ h)
→ − 1

x2
as h→ 0.

4.2. #2. Set f(x) := x2 + 3x. Then,

f(x+ h)− f(x)

h
=

(x+ h)2 + 3(x+ h)− x2 − 3x

h
=
x2 + 2xh+ h2 + 3x+ 3h− x2 − 3x

h
= 2x+ 3 + h→ 2x+ 3 as h→ 0.

Therefore, f ′(x) = 2x+ 3 for all x.

4.2. #3. Use the quotient rule [Theorem 4.2.6(d)]:(
sinx

cosx

)′
=

(cosx)2 + (sinx)2

(cosx)2
=

1

(cosx)2
.

4.2. #11. Define

f(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0
, g(x) =

{
x2 sin(1/x) if x 6= 0

0 if x = 0.

Then, I claim that f is not differentiable at 0 and g is. Indeed,

f(x)− f(0)

x− 0
= sin(1/x)

does not have a limit as x→ 0+ [see Exercise 4.1.9], whereas

g(x)− f(0)

x− 0
= x sin(1/x),

whence ∣∣∣∣g(x)− f(0)

x− 0

∣∣∣∣ = |x sin(1/x)| ≤ |x| → 0 as x→ 0.
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