Math 3210-1, Summer 2016
Solutions to Assignment 6

3.4. #10. Foralln e Nand z € (—1,1),

sn(as):Zxk:1+x+:B2+---+$”.

k=0
According to Problem 9,
1 — gntt .
sn() = 11—z (1)
Here is the reason:
(a) Spr1(x) — sp(x) = 2™ so that s,y1(z) = s,(z) + 2", for all n € N and

re(—1,1);
(b) asp(z) =x+ -+ 2" =s,1(zx) — 1.
Plug (a) into (b) to see that xs,(z) = s,(z) + 2" — 1, which we can solve to obtain

(1—2)s,(z) =1 — 2™,

which is another way to state (1). Now, let us apply (1) to find that

(2)—— T heref (z) — — = G eN, pe (<1,1)
— =— erefore  |s,(x) — = n x € (— :
A 1—x’ " 1—x 1—x ’ ’
Optimize to find that if 0 < r < 1, then
1 |$‘n+1 ) 1 rn-l—l
sup |sn(x) — = sup < 7" sup = :
x€[—r,7] l—x z€[—r,r] l—x xz€[—r,r] -2z L—r

[Challenge: Prove that the preceding inequality is in fact an identity.] In any case, it

follows that .

1—2z

= lim =0.

Sn(l') B r—0+ 1 —1r

lim sup
r—0F z€[—r,r]

Therefore, s,(z) — (1 —z)~!, uniformly for z € [—r,r], as n — oco. On the other
hand, the same sort of computation shows that

1
11—z

|x|n+1 |y|n+l

Sup |Sn (x) -

ze(—1,1)

= sup > ,
ze(—1,1) 1—x 1—y

for any y € (—1,1). By picking y € (—1,1) to be arbitrarily close to one, we see that
the preceding is = oo, and hence cannot converge to 0 as n — oo.
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3.4. #12. If n,m € N satisfy n > m, then

4.1.

4.1.

n

Sp() — sp(x) = Z apx® Va € (—1,1).

k=m+1

In particular, for every r € (0, 1),

sup s (z) = sm()| < sup D Jaxllal",
S

x€[—r,r] z€[—r,7] PRa—

thanks to the triangle inequality. If z € [—r,7], then |z|* < r* for all k € N. In
particular,

sup [sa() —su(@) < C Y k<o Yk
z€[—rr] k=m-+1 k=m+1

where C' := sup;, |ax| is a finite constant [because the as are bounded]. Now we
compute the geometric series in question to find that

Crm+l
up[3u(@) = sml@)] < S
z€[—r,r] -Tr

Since r™*t — 0 as m — o0, it follows that for all € > 0 there exists N. € N such that
rmtt < ¢ for all m > N.. Choose and fix an arbitrary € > 0 to see that

Ce
sup |sp(x) — s ()| <
) ()] < 7

Vm,n € Nst.n>m > N..

This implies that {s,}°°, is uniformly Cauchy on [—r,r]. Since s, is a polynomial,
it is continuous on (—1,1) for every n € N. Therefore, Theorems 3.4.4 and 3.4.10
together imply that s(x) := lim,_, S, () exists for all z € [—r,r] and is a continuous
function. Since this is true for every r € (0,1), s exists and is continuous for every
re(—1,1).

#8. Suppose to the contrary that L, := lim, ,o+ f(z) exists. It would then follow that
L = lim,_, f(x,) for every strictly decreasing positive sequence {z,}>; such that
x, — 0. But this is not so. For instance, z, := 2/(7mn) defines a strictly decreasing
sequence that converges to zero, yet f(z,) = sin(mn/2) is infinitely often +1 and
infinitely often zero, so there is no limit. By using —x,, we see that lim,_,o- f(x) also
doesn’t exist.

#9. Here,
f(a:):{_m if x <0,

sin(z) if x > 0.

Then lim, - f(z) = lim, ,o-(—z) = 0 and lim, .o+ f(z) = lim, .o+ sin(z) = 0. The
two limits agree, therefore, lim,_,o f(z) = 0 by Theorem 4.1.7.



4.1.

4.2.

4.2.

4.2.

4.2.

#13. Let {x,},en be a sequence of numbers in (a,b) such that =, < x,.; for alln > 1
and lim, o z, = a. Then {f(z,)}nen is a bounded, strictly decreasing sequence. By
Theorem 2.4.6,

L:= lim f(z,)

n—o0
exists. Since f is bounded, L is a real number; that is L € R, equiv. L & {—oc0, 00}.
By the definition of limits, for every € > 0 there exists N. € N such that

|f(z,) — L] <e VYn > N..

Choose and fix an arbitrary ¢ > 0. If n > N, and = < =z, there exists m > n such
that = € (2,41, ), which in turn implies that

f@mi1) < fz) < flam).
Because m > n > N;, f(xy,11) > L —¢ and f(z,,) < L+e. This proves that if n > N.
and = € (a,x,), then |f(z) — L| < e. This proves that lim, ,,+ f(z) = L. The same
sort of argument can be used to prove that lim, ,,~ f(x) exists and is a real number.
I will leave the details to you.

41,
fath)—fx) 1/ 1 1y_ -1 1
h _E(x+h_5>_x(m+h)_> x? as h = 0.
#2. Set f(z) := 2% + 3z. Then,

flx+h)—f(z) (r+h)?+3@x+h)—2®>—3c x*+2zh+h*+3z+3h—2* -3z

h h h
=2z +3+h—22x+3 as h — 0.

Therefore, f'(z) = 2z + 3 for all z.

#3. Use the quotient rule [Theorem 4.2.6(d)]:
(sinx)l _ (cosz)?+ (sinz)* 1

cos T (cosx)? (cosx)?

#11. Define

xsin(l/x) ifx#0 2?sin(1/z) if x #0

flay = TN HEFO gy Jaent/)

0 ite=0 0 if x =0.

Then, I claim that f is not differentiable at 0 and g is. Indeed,
—f(x;; : g(m = sin(1/x)
does not have a limit as z — 07 [see Exercise 4.1.9], whereas
—9(32 : 5(0) = zsin(1/z),
whence 0
‘g(z)—é’( )‘:|xsin(1/x)|§\x|—>0 as x — 0.
x



