
Math 3210–1, Summer 2016
Solutions to Assignment 5

3.1. #1. The question is really asking, “for which values of x is x2 − 1 in [0 , 1]”? Equivalently,
“for which values of x is x2 in [1 , 2]”? Therefore, the domain is the union of [−

√
2 ,−1]

and [1 ,
√

2].

3.1. #3. First of all, f(x) := 1/(x2+1) is well defined for all x ∈ R. This is because x2+1 ≥ 1 > 0
for all x ∈ R. To prove continuity we first observe that for all x, y ∈ R,

f(x)− f(y) =
1

x2 + 1
− 1

y2 + 1
=

y2 − x2

(x2 + 1)(y2 + 1)
.

Therefore,

|f(x)− f(y)| = |x2 − y2|
(x2 + 1)(y2 + 1)

=
|x− y| · |x+ y|
(x2 + 1)(y2 + 1)

.

For all real numbers x and y, we have: (a) x2 + 1 ≥ 1; (b) y2 + 1 ≥ 1; and (c)
|x+ y| ≤ |x|+ |y|. Therefore,

|f(x)− f(y)| ≤ |x− y|(|x|+ |y|). (1)

Now we use the general inequality (1) in order to prove that f(x) = 1/(x2 + 1) is
continuous at every point in R. Choose and fix an arbitrary point a ∈ R. It remains
to prove that f is continuous at a regardless of the manner in which we chose a.

Choose and fix an arbitrary ε > 0, and define δ to be a positive number that is small
enough to satisfy

δ(2|a|+ δ) ≤ ε.

There is no unique choice, of course. Just choose one.

For all y ∈ R,

|y − a| ≤ δ ⇒ |f(a)− f(y)| ≤ |y − a|(|a|+ |y|) ≤ δ(2|a|+ δ) ≤ ε.

Since ε > 0 was arbitrary, this proves that f is continuous at a. Since a ∈ R was
arbitrary, this proves that f is continuous.

3.1. #9. f is not continuous if its domain were R. Informally, this is because f has a jump
at x = 0. Of course, the formal definition of continuity is more subtle. In order to
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prove that f is not continuous at 0, we show that there exists ε > 0 such that for
every δ there exists y ∈ R such that |y| ≤ δ and |f(y) − f(0)| > ε. Indeed, any
ε ∈ (0 , 2) works. For instance, set ε = 1/2. Then for every δ > 0 and all y ∈ (−δ , 0),
|f(0)− f(y)| = f(0)− f(y) = 1− (−1) = 2 > ε.

If the domain of f were D := [0 ,∞), then f would be continuous because f is a
constant on D; that is, |f(x)− f(y)| = 0 < ε for all x, y ∈ D and ε > 0.

3.2. #1. Note that x2 − 2x + 1 = (x − 1)2 ≥ 0 for all x ∈ R. Therefore, f(x) ≥ −1 for all
x ∈ R. Because f(1) = −1 and 1 ∈ [0 , 3), the preceding shows that f(x) is minimized
at x = 1, and the minimum value of f over [0 , 3) is f(1) = −1. For the maximum, we
note that f(x) = x(x − 2). In particular, f(x) ≤ 0 when x ≤ 2 and f(x) > 0 when
x > 2. This proves that if f had a maximum, then that maximum would have to occur
somewhere in the interval [2 , 3). Next I claim that

x2 − 2x < y2 − 2y if 2 ≤ x < y. (2)

In other words, I claim that f is a strictly increasing function on [2 ,∞). If (2) were
true, then it would follows that f(x) < f(3) = 3 for all x ≥ 2. Because the latter
inequality is strict this shows that f is maximized at x = 3 and hence does not have a
maximum in [2 , 3).

It remains to prove (2). The assertion (2) is equivalent to the following: y2 − x2 >
2(y − x) for all y > x ≥ 2, which is in turn equivalent to the claim that y + x > 2 for
all y > x ≥ 2. Clearly, y + x > 2 for all y > x ≥ 2; therefore, (2) holds.

3.2. #2. Because I is closed and bounded, Theorem 3.2.1 ensures that there exist two points
x, z ∈ I such that f(x) ≤ f(y) ≤ f(z) for all y ∈ I. [In other words, the minimum of
f is achieved at some point x ∈ I and the maximum is achived at some point z ∈ I.]
From now the argument is carried by considering three different cases.

Case 1. If f(x) > 0, then set m := f(x) to see that f(y) ≥ m for all y ∈ I. This shows
that such a number m > 0 exists when f(x) > 0 and proves the result in Case 1.

Case 2. If f(z) < 0, then set m := −f(z) to see that f(y) ≤ −m for all y ∈ I. This
shows that such a number m > 0 exists when f(z) < 0 and proves the asserted result
in Case 1.

Case 3. If f(x) < 0 and f(z) > 0, then by the intermediate value theorem there would
exist a point w, between x and z, such that f(w) = 0. This cannot be, therefore Case
1 and Case 2 are the only logical possible cases.

3.2. #4. Define f(x) = 1/x for x ∈ I := (0 , 1). Then f is continuous [ this is proved as in
Exercise 3.3.3] but clearly not bounded. The function f(x) = x2 − 2x is continuous
and bounded on [2 , 3) but does not have a maximum [see Exercise 3.2.1].
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3.2. #5. Let f(x) = x for all x ∈ I := [1 ,∞). Then f is easily seen to be continuous on I but
not bounded. Neither does f have a maximum value on I.

3.2. #9. Define g(x) = f(x)−x for all x ∈ [0 , 1]. Then, g(0) = f(0) ≥ 0 and g(1) = f(1)−1 ≤ 0.

Case 1. If g(0) = 0 then this means that f(0) = 0 and hence there exists a fixed point
at x = 0.

Case 2. If g(1) = 1 then a similar observation to the one in case 1 yields a fixed point
at x = 1.

Case 3. In the remaning case, g(0) > 0 and g(1) < 0. Since g is a difference of two
continuous functions it is continuous. Therefore the intermediate-value theorem yields
some y ∈ [0 , 1] such that g(y) = 0. By the definition of g, this y is a fixed point of f ;
i.e., f(y) = y.

3.3. #1. Yes, f is uniformly continuous on (0 , 1). Here is why. Choose and fix ε > 0. Define
δ = ε/2. Then for all x, y ∈ (0 , 1),

|y − x| < δ ⇒ |f(x)− f(y)| = |x− y|(x+ y) ≤ 2|x− y| < 2δ = ε.

3.3. #2. Since f is unbounded on (0 , 1), it follows from the more general Exercise 3.3.7 below
that f is not uniformly continuous [though it is continuous, from basic principles].

3.3. #7. Suppose to the contrary that f is uniformly continuous on its domain I. Then, Theorem
3.3.6 ensures f has a continuous extension to Ī. Because f is unbounded on I, f would
have to be also unbounded on the larger domain Ī. But according to Theorem 3.2.1,
a continuous function on a closed and bounded domain (here Ī) attains its maximum
and minimum and therefore cannot be unbounded.
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