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Math 3210-1, Summer 2016
Solutions to Assignment 5

The question is really asking, “for which values of z is > — 1 in [0, 1]”? Equivalently,
“for which values of z is 22 in [1,2]”? Therefore, the domain is the union of [—/2, —1]

and [1,+/2].

First of all, f(z) := 1/(2*+1) is well defined for all x € R. This is because +1 > 1> 0
for all x € R. To prove continuity we first observe that for all z,y € R,
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For all real numbers z and y, we have: (a) 2> +1 > 1; (b) > +1 > 1; and (c)
|z 4+ y| < |z| + |y|. Therefore,

[f (@) = fW)| < |z —yl(lz] + [y]). (1)

Now we use the general inequality (1) in order to prove that f(z) = 1/(z* + 1) is
continuous at every point in R. Choose and fix an arbitrary point a € R. It remains
to prove that f is continuous at a regardless of the manner in which we chose a.

Choose and fix an arbitrary € > 0, and define § to be a positive number that is small
enough to satisfy
d(2lal +6) <e.

There is no unique choice, of course. Just choose one.

For all y € R,
y—al <o = |fle) = f)l <y —al(la] + |y[) < 6(2|a] +0) <e.

Since ¢ > 0 was arbitrary, this proves that f is continuous at a. Since a € R was
arbitrary, this proves that f is continuous.

f is nmot continuous if its domain were R. Informally, this is because f has a jump
at © = 0. Of course, the formal definition of continuity is more subtle. In order to
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prove that f is not continuous at 0, we show that there exists ¢ > 0 such that for
every ¢ there exists y € R such that |y| < 0 and |f(y) — f(0)] > . Indeed, any
e € (0,2) works. For instance, set € = /2. Then for every § > 0 and all y € (=4 ,0),

1£(0) = fy)l = f(0) = fly) =1—(=1) =2>¢.

If the domain of f were D := [0,00), then f would be continuous because f is a
constant on D; that is, |f(x) — f(y)] =0 < e for all z,y € D and € > 0.

Note that 22 — 2x +1 = (z — 1)? > 0 for all z € R. Therefore, f(z) > —1 for all
x € R. Because f(1) = —1 and 1 € [0, 3), the preceding shows that f(z) is minimized
at = 1, and the minimum value of f over [0,3) is f(1) = —1. For the maximum, we
note that f(z) = z(x — 2). In particular, f(z) < 0 when z < 2 and f(z) > 0 when
x > 2. This proves that if f had a maximum, then that maximum would have to occur
somewhere in the interval [2,3). Next I claim that

v — 21 < y® -2y if2<z<uy. (2)

In other words, I claim that f is a strictly increasing function on [2,00). If (2) were
true, then it would follows that f(x) < f(3) = 3 for all # > 2. Because the latter
inequality is strict this shows that f is maximized at x = 3 and hence does not have a
maximum in [2,3).

It remains to prove (2). The assertion (2) is equivalent to the following: y* — 2 >
2(y — x) for all y > x > 2, which is in turn equivalent to the claim that y + x > 2 for
all y > o > 2. Clearly, y + x > 2 for all y > x > 2; therefore, (2) holds.

Because [ is closed and bounded, Theorem 3.2.1 ensures that there exist two points
x,z € I such that f(z) < f(y) < f(z) for all y € I. [In other words, the minimum of
f is achieved at some point x € I and the maximum is achived at some point z € [.]
From now the argument is carried by considering three different cases.

Case 1. If f(z) > 0, then set m := f(x) to see that f(y) > m for all y € I. This shows
that such a number m > 0 exists when f(z) > 0 and proves the result in Case 1.

Case 2. If f(z) < 0, then set m := —f(z) to see that f(y) < —m for all y € I. This
shows that such a number m > 0 exists when f(z) < 0 and proves the asserted result
in Case 1.

Case 3. If f(z) < 0 and f(z) > 0, then by the intermediate value theorem there would
exist a point w, between x and z, such that f(w) = 0. This cannot be, therefore Case
1 and Case 2 are the only logical possible cases.

Define f(x) = 1/x for x € I := (0,1). Then f is continuous [ this is proved as in
Exercise 3.3.3] but clearly not bounded. The function f(x) = x? — 2z is continuous
and bounded on [2,3) but does not have a maximum [see Exercise 3.2.1].
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Let f(z) =a for all z € I :=[1,00). Then f is easily seen to be continuous on I but
not bounded. Neither does f have a maximum value on I.

Define g(z) = f(x)—x forallz € [0, 1]. Then, g(0) = f(0) > 0and g(1) = f(1)—1 < 0.

Case 1. If g(0) = 0 then this means that f(0) = 0 and hence there exists a fixed point
at z = 0.

Case 2. If g(1) = 1 then a similar observation to the one in case 1 yields a fixed point
at x = 1.

Case 3. In the remaning case, g(0) > 0 and g(1) < 0. Since g is a difference of two
continuous functions it is continuous. Therefore the intermediate-value theorem yields
some y € [0, 1] such that g(y) = 0. By the definition of g, this y is a fixed point of f;

e, fly) =yv.

Yes, f is uniformly continuous on (0,1). Here is why. Choose and fix € > 0. Define
d =¢&/2. Then for all z,y € (0,1),

ly—z[<é = |fl@e)-fWl=lr—yllz+y) <2z -yl <20 =e

Since f is unbounded on (0, 1), it follows from the more general Exercise 3.3.7 below
that f is not uniformly continuous [though it is continuous, from basic principles].

Suppose to the contrary that f is uniformly continuous on its domain /. Then, Theorem
3.3.6 ensures f has a continuous extension to I. Because f is unbounded on I, f would
have to be also unbounded on the larger domain /. But according to Theorem 3.2.1,
a continuous function on a closed and bounded domain (here I) attains its maximum
and minimum and therefore cannot be unbounded.



