Math 3210-1, Summer 2016
Solutions to Assignment 3

2.1. #2. If [z — 1] < Y2and |y — 2| < Y2, then 12 < x < 3/2 and 3/2 < y < 5/2. In particular,
x #y.

2.1. #5. We plan to prove that
2n—1 2

lim =—.
nsoodn+1 3
To this end, we first note that for every natural number n,
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Therefore, for every € > 0,
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This does the job.

2.1. #8. First, we may observe that
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From this we can conclude that for every € > 0,
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Equivalently, v/n + 1 —+/n — 0 as n — oo.
2.2. #5. Let us write, for all n € N,
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Simplify to find that
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In particular,
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Simplify further, by examining signs, in order to see that for all n € N,
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Multiply and divide by v/1 + n=! + 1 to see that, for all n € N,
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In particular, for every € > 0,
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This completes the proof.

2.2. #6. First, let us show that
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Indeed, for every € > 0,
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Claim. Ifa, — a and b, — b then a,b, — ab.

Proof. Apply the triangle inequality to see that

|anb, — ab| = |ay,b, — axb+ a,b — ab| < |ayb, — anb| + |a,b — ab
= |an|[bn, — b + [b]|ay, — al.

Since a, — a, the sequence ay,as,- - is bounded [Corollary 2.2.4]. In other words,
there exists a finite constant K such that |a,| < K for all n € N. This yields,

lanb, — ab] < K|b, — b| + |b|a,, — al.



2.3. #8.

2.3. #11.

2.3. #12.

Let L := max{K ,|b|} to see that
\anb, — ab] < L{|b, —b| + |a, —al}.

For every ¢ > 0 there exists N € N such that |b, — b| < ¢ and |a, — a| < ¢ for all
n > N. Therefore, it follows that

Ve>03dN eN: |a,b, —abl <2Le  VYn > N.

This proves the claim. O]

With the Claim under way, it is easy to finish the exercise: We verified that 1+n~! — 1.
The claim shows that (1+n"1)? = (14+n"!)(1+n"!) = 1x1 =1, and another appeal
to the claim shows that
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By default, for all € > 0 there exists N. € N such that |b, — b < e. Since b > 0, we
can choose ¢ := b/2, specifically, in order to see that
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Now |b, — b| < b/2 is equivalent to
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This proves that b, > b/2 for all n > Nyjp. Let M := minj <i<n, ,, bi to see that: (i)
M > 0; and (ii) b, > min{M ,b/2} for all n. This does the job with m := min{M ,b/2}.

Because b, = n'/" — 1, we can solve to find that n'/* = b, + 1, equivalently,

b, =n""—1 for all n € N.

Claim. b, > 0Vn € N.

Proof of Claim. n'/* —1 > 0 if and only if n!/™ > 1, which is equivalent to n > 1" = 1.
Since n > 1, the Claim follows. O

Since n*/™ = b, + 1, it follows that n = (1 +b,)™. Therefore, by the Binomial theorem,
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I have used the Claim to justify the inequality. Solve to obtain
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By the “squeeze argument,” since 0 < b, = n'/" —1 < /2/(n + 1) — 0, it follows that
b, — 0 as n — oco. That is, n'/" — 1 as n — oo.



