
Math 3210–1, Summer 2016
Solutions to Assignment 3

2.1. #2. If |x − 1| ≤ 1/2 and |y − 2| < 1/2, then 1/2 < x < 3/2 and 3/2 < y < 5/2. In particular,
x 6= y.

2.1. #5. We plan to prove that

lim
n→∞

2n− 1

3n + 1
=

2

3
.

To this end, we first note that for every natural number n,∣∣∣∣2n− 1

3n + 1
− 2

3

∣∣∣∣ =

∣∣∣∣3(2n− 1)− 2(3n + 1)

3(3n + 1)

∣∣∣∣ =

∣∣∣∣ −5

3(3n + 1)

∣∣∣∣ =
5

3(3n + 1)
≤ 5

9n
.

Therefore, for every ε > 0,∣∣∣∣2n− 1

3n + 1
− 2

3

∣∣∣∣ < ε for all n > Nε :=
5

9ε
.

This does the job.

2.1. #8. First, we may observe that

0 ≤
√
n + 1−

√
n =

(√
n + 1−

√
n
) (√

n + 1 +
√
n
)

√
n + 1 +

√
n

=
1√

n + 1 +
√
n
<

1√
n
.

Therefore, ∣∣∣√n + 1−
√
n− 0

∣∣∣ =
√
n + 1 <

1√
n

∀n ∈ N.

From this we can conclude that for every ε > 0,∣∣∣√n + 1−
√
n− 0

∣∣∣ < ε for all n > Nε :=
1

ε2
.

Equivalently,
√
n + 1−

√
n→ 0 as n→∞.

2.2. #5. Let us write, for all n ∈ N,

√
n2 + n− n =

(√
n2 + n− n

) (√
n2 + n + n

)
√
n2 + n + n

=
n√

n2 + n + n
.
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Simplify to find that
√
n2 + n− n =

1√
1 + 1

n
+ 1

.

In particular,

∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ =

∣∣∣∣∣∣ 1√
1 + 1

n
+ 1
− 1

2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1−

√
1 + 1

n

2
√

1 + 1
n

+ 2

∣∣∣∣∣∣ .
Simplify further, by examining signs, in order to see that for all n ∈ N,

∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ =

√
1 + 1

n
− 1

2
√

1 + 1
n

+ 2
≤ 1

2

(√
1 +

1

n
− 1

)
.

Multiply and divide by
√

1 + n−1 + 1 to see that, for all n ∈ N,∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ ≤ 1

2

1/n√
1 + 1

n
+ 1
≤ 1

2n
.

In particular, for every ε > 0,∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ < ε ∀n > Nε =
1

2ε
.

This completes the proof.

2.2. #6. First, let us show that

1 +
1

n
→ 1 as n→∞.

Indeed, for every ε > 0,∣∣(1 + 1
n

)
− 1
∣∣ =

1

n
< ε ∀n > Nε :=

1

ε
.

Claim. If an → a and bn → b then anbn → ab.

Proof. Apply the triangle inequality to see that

|anbn − ab| = |anbn − anb + anb− ab| ≤ |anbn − anb|+ |anb− ab|
= |an||bn − b|+ |b||an − a|.

Since an → a, the sequence a1, a2, · · · is bounded [Corollary 2.2.4]. In other words,
there exists a finite constant K such that |an| ≤ K for all n ∈ N. This yields,

|anbn − ab| ≤ K|bn − b|+ |b||an − a|.
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Let L := max{K , |b|} to see that

|anbn − ab| ≤ L {|bn − b|+ |an − a|} .

For every ε > 0 there exists N ∈ N such that |bn − b| < ε and |an − a| < ε for all
n > N . Therefore, it follows that

∀ε > 0 ∃N ∈ N : |anbn − ab| ≤ 2Lε ∀n > N.

This proves the claim.

With the Claim under way, it is easy to finish the exercise: We verified that 1+n−1 → 1.
The claim shows that (1+n−1)2 = (1+n−1)(1+n−1)→ 1×1 = 1, and another appeal
to the claim shows that(

1 + 1
n

)3
=
(
1 + 1

n

)2 (
1 + 1

n

)
→ 1× 1 = 1.

2.3. #8. By default, for all ε > 0 there exists Nε ∈ N such that |bn − b| < ε. Since b > 0, we
can choose ε := b/2, specifically, in order to see that

|bn − b| < b

2
∀n > Nb/2.

Now |bn − b| < b/2 is equivalent to

b

2
= b− b

2
< bn < b +

b

2
=

3b

2
.

This proves that bn > b/2 for all n > Nb/2. Let M := min1≤i≤Nb/2
bi to see that: (i)

M > 0; and (ii) bn > min{M , b/2} for all n. This does the job with m := min{M , b/2}.

2.3. #11. Because bn = n1/n − 1, we can solve to find that n1/n = bn + 1, equivalently,

bn = n1/n − 1 for all n ∈ N.

Claim. bn ≥ 0 ∀n ∈ N.

Proof of Claim. n1/n−1 ≥ 0 if and only if n1/n ≥ 1, which is equivalent to n ≥ 1n = 1.
Since n ≥ 1, the Claim follows.

Since n1/n = bn + 1, it follows that n = (1 + bn)n. Therefore, by the Binomial theorem,

n =
n∑

i=0

(
n

i

)
bin ≥

(
n

2

)
b2n =

n(n + 1)

2
b2n.

I have used the Claim to justify the inequality. Solve to obtain

bn ≤
√

2

n + 1
∀n ∈ N.

2.3. #12. By the “squeeze argument,” since 0 ≤ bn = n1/n−1 ≤
√

2/(n + 1)→ 0, it follows that
bn → 0 as n→∞. That is, n1/n → 1 as n→∞.
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