
Math 3210–1, Summer 2016
Solutions to Assignment 11

6.1. #7. The sum
∑∞

k=1(−2/3)k converges absolutely because
∑∞

k=1(2/3)k <∞, thanks to
elementary properties of geometric series.

6.2. #8. Since ak =
√
ke−

√
k is not decreasing, one has to be careful, if one were to use the

integral test. [It can be done this way though.] Instead, let us just observe that k2ak is
bounded, say there exists a finite constant M such that k2ak ≤M for all k ≥ 1. If so,
then this would imply that ak ≤M/k2 in which case,

∑
k |ak| =

∑
k ak ≤M

∑
k k
−2 <

∞. This proves that that
∑

k ak converges.

Let’s prove the more general fact that f(x) = x5/2e−
√
x is bounded on [1 ,∞). [This is

more general because k2ak = f(k).] Now, f is differentiable and

f ′(x) = 5
2
x3/2e−

√
x − 1

2
x2e−

√
x = 1

2
x3/2e−

√
x
[
5−
√
x
]
.

Set this expression equal to zero to see that the critical point of f is at x = 25 with
f(25) = (5/e)5. If x > 25 then f ′(x) < 0 and if x < 25 then f ′(x) > 0. This proves
that f is maximized at x = 25 and f(x) ≤ (5/e)5. This does the job with M = (5/e)5.

6.2. #11. We know that there exists a finite constant M such that |bk| ≤M for all k ≥ 1.
Then, the partial sum of the absolute sum satisfies

n∑
k=1

|akbk| ≤M
n∑

k=1

|ak| ≤M
∞∑
k=1

|ak|.

Therefore, sn :=
∑n

k=1 |akbk| is bounded, and hence
∑

k akbk converges absolutely.

6.3. #1. Since ak := 1/k1/3 decreases to zero,
∑

k(−1)kak converges. But
∑

k ak = ∞
[p-series]. Therefore,

∑
k ak converges conditionally.

6.3. #11. Let ak = bk = 2−k to see that

∞∑
n=0

n∑
k=0

akbn−k =
∞∑
n=0

n∑
k=0

2−n =
∞∑
n=0

(n + 1)2−n.

By the product formula, this quantity is equal to(
∞∑
k=0

ak

)(
∞∑
k=0

bk

)
= 2× 2 = 4,

thanks to the fact that
∑

k ak =
∑

k bk = 2, due to general facts about geometric series.
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6.5. #1. Because

e|x| =
∞∑
n=0

|x|n

n!

defines an absolutely convergence series, the summands must tend to zero; that is,
limn→∞ |x|n/n! = 0.

6.5. #4. The sum in question is
n∑

k=0

1

k!
.

According to Taylor’s theorem [with a = 0], for all x > 0 there exists c ∈ (0 , x) such
that

ex =
n∑

k=0

xk

k!
+

ecxn+1

(n + 1)!
.

Therefore, set x = 1 to see that there exists c ∈ (0 , 1) such that∣∣∣∣∣
n∑

k=0

1

k!
− e

∣∣∣∣∣ =
ec

(n + 1)!
<

e

(n + 1)!
<

3

(n + 1)!
.

It remains to choose n large enough to ensure that cn := 3/(n + 1)! ≤ 0.001. Now,

c6 =
3

7!
=

1

1× 2× 4× 5× 6× 7
≈ 0.0006 < 0.001.

So, n = 6 works.

6.5. #12. Note that

ln

∣∣∣∣∣e−1/x
2

xn

∣∣∣∣∣ = − 1

x2
− n ln |x| = − 1

x2

[
1 + nx2 ln |x|

]
.

By l’Hôpital’s rule,

lim
x↓0

x2 lnx = lim
x↓0

lnx

1/x2
= lim

x↓0

1/x

−2/x3
= 0.

Similarly,
lim
x↑0

x2 ln |x| = lim
x↓0

x2 lnx = 0.

Therefore,

lim
x↓0

ln

∣∣∣∣∣e−1/x
2

xn

∣∣∣∣∣ = −∞,

which is another way to say that

lim
x→0

∣∣∣∣∣e−1/x
2

xn

∣∣∣∣∣ = 0.
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