Math 3210–1, Summer 2016 Solutions to Assignment 10

5.3. #3. Let $f(x) := \int_0^x \sin(t^2) dt$ and $g(x) = x^2$ for all $x \in \mathbb{R}$. We are asked to find

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_0^{x^2} \sin(t^2) \,\mathrm{d}t = \frac{\mathrm{d}}{\mathrm{d}x} (f \circ g)(x).$$

Apply the chain rule: $(f \circ g)' = (f' \circ g)g'$. Now, g'(x) = 2x for all x; and $f'(x) = \sin(x^2)$ by the fundamental theorem of calculus [this is because $\sin(t^2)$ is a differentiable function on \mathbb{R}]. Therefore,

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \circ g)(x) = f'(g(x))g'(x) = 2x\sin(x^4).$$

5.3. #4. Let $f(x) := \int_0^x \exp(-t^2) dt$ for all $t \in \mathbb{R}$ in order to see that

$$f'(x) = \mathrm{e}^{-x^2},$$

owing to the fundamental theorem of calculus.

We are asked to find

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{1/x}^{x} \mathrm{e}^{-t^2} \,\mathrm{d}t = \frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) - f(1/x) \right) = f'(x) - f'(1/x) \left[-\frac{1}{x^2} \right] = f'(x) + \frac{f'(1/x)}{x^2}$$

Combine the above two facts to see that

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{1/x}^{x} \mathrm{e}^{-t^2} \,\mathrm{d}t = \exp(-x^2) + x^{-2} \exp(-1/x^2).$$

- **5.3.** #5. $f(x) = 1/x^2$ is not integrable near 0; therefore, the mentioned theorem does not apply.
- **5.3.** #6. Define g(x) = f(x) for all x. Then, for all $-\infty < a \le b < \infty$,

$$\int_{a}^{b} f(x)f'(x) \, \mathrm{d}x = f^{2}(b) - f^{2}(a) - \int_{a}^{b} f(x)f'(x) \, \mathrm{d}x$$

Solve for the integral:

$$\int_{a}^{b} f(x)f'(x) \, \mathrm{d}x = \frac{f^{2}(b) - f^{2}(a)}{2}.$$

5.3. #9. Let g(x) = f(x) for all $x \neq c$ and $g(c) \neq f(c)$. Define h(x) := g(x) - f(x) for all $x \in \mathbb{R}$. Then, h(x) = 0 for all $x \neq c$ and $h(c) := g(c) - f(c) \neq 0$. Our goal is to prove that $\int_a^b h(x) dx = b - a$.

Method 1. Perhaps the simplest proof is this: Define P_n to be the following partition of [a, b]: $P_n = \{x_0, x_1, x_2, x_3\}$, where

$$x_0 = a$$
, $x_1 = c - n^{-1}$, $x_2 = c + n^{-1}$, $x_3 = b$.

Of course, this makes sense only if $x_1, x_3 \in (1, b)$. That is, $c + n^{-1} < b$ and $c - n^{-1} > a$; equivalently, $n > N := \max\{(b - c)^{-1}, (c - a)^{-1}\}$.

Now, for every n > N, $U(f, P_n) = M_1(x_1 - x_0) + M_2(x_2 - x_1) + M_3(x_3 - x_2) = 2/n$ and $L(f, P_n) = 0$, manifestly. Therefore, for every $\varepsilon > 0$,

$$U(h, P_n) = U(h, P_n) - L(h, P_n) \le \varepsilon \qquad \forall n > \max(\varepsilon^{-1}, N).$$

It follows that $\overline{\int}_{a}^{b} f = \underline{\int}_{a}^{b} h = 0$. Therefore, $\int_{a}^{b} h = 0$.

Method 2. Let $F(z) := \int_a^z h$ for all $z \in [a, b]$. Then, F is continuous on (a, b) [by the fundamental theorem of calculus]. If $z \in (a, c)$, then

$$F(c) = F(c) - F(a) = (F(c) - F(z)) + (F(z) - F(a)).$$

Since f(x) = g(x) every $x \in [a, z]$, we can deduce that h = 0 on [a, z] and hence $F(z) - F(a) = \int_a^z h = 0$. Therefore, F(c) - F(a) = F(c) - F(z) for all $z \in (a, c)$. Let $z \to c$ and appeal to continuity to see that $F(c) - F(a) = F(c) - \lim_{z \to c} F(z) = F(c) - F(c) = 0$. Consequently, F(c) = F(a), which is zero.

5.4. #9. This is an improper integral; that is,

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{a \to \infty} \int_{1}^{a} \frac{\mathrm{d}x}{x^{p}}.$$

If $p \neq 1$, then for all a > 1,

$$\int_{1}^{a} \frac{\mathrm{d}x}{x^{p}} = \frac{a^{1-p}}{1-p} - \frac{1}{1-p}.$$

If p > 1, then $a^{1-p} \to 0$ as $a \to \infty$; and hence

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = -\frac{1}{1-p} = \frac{1}{p-1} \qquad \text{if } p > 1.$$

On the other hand, $a^{1-p} \to \infty$ as $a \to \infty$; therefore, $\int_a^{\infty} x^{-p} dx$ diverges. Finally, if p = 1, then

$$\int_{1}^{a} \frac{\mathrm{d}x}{x} = \ln(a) \to \infty \qquad \text{as } a \to \infty.$$

Therefore, the integral diverges in that case, as well.

Actually, it is not so easy to give an honest proof that $\lim_{a\to\infty} \ln(a) = \infty$. So let me do that here as well. [It is not so easy to prove this because we have not rigorously proved that its inverse $\exp(a)$ goes to infinity as $a \to \infty$.] If k > 1 is an integer, then

$$\ln(e^k) = \int_1^{\exp(k)} \frac{\mathrm{d}x}{x} = \sum_{j=0}^{k-1} \int_{\exp(j)}^{\exp(j+1)} \frac{\mathrm{d}x}{x}$$

,

thanks to the additive nature of the Riemann integral. If x is between e^{j} and e^{j+1} , then $1/x \ge e^{-(j+1)}$, and hence by Theorem 5.2.4,

$$\ln(e^k) \ge \sum_{j=0}^{k-1} \int_{\exp(j)}^{\exp(j+1)} \exp(-j-1) \, \mathrm{d}x = \sum_{j=0}^{k-1} \left[e^{j+1} - e^j \right] e^{-j-1} = \sum_{j=0}^{k-1} \left(1 - e^{-1} \right) = k \left(1 - e^{-1} \right).$$

Therefore, $\ln(e^k) \to \infty$ as $k \to \infty$. In particular, for all $N \in \mathbb{N}$ there exists $K \in \mathbb{N}$ such that $\ln(e^k) \ge N$ for all $k \ge K$. Since \ln is increasing, $\ln(a) \ge N$ for all $a \ge e^K$ as well. Therefore, $\lim_{a\to\infty} \ln(a) = \infty$.

5.4. #10. This is an improper integral: $\int_0^1 x^{-p} dx = \lim_{a \downarrow 0} \int_a^1 x^{-p} dx$. Now, for all $a \in (0, 1)$,

$$\int_{a}^{1} \frac{\mathrm{d}x}{x^{p}} = \begin{cases} -\ln(a) & \text{if } p = 1, \\ \frac{1 - a^{1-p}}{1 - p} & \text{if } p \neq 1. \end{cases}$$

Therefore, $\int_0^1 x^{-p} dx$ converges if and only if 0 , in which case,

$$\int_0^1 \frac{\mathrm{d}x}{x^p} = \frac{1}{1-p} \qquad \text{when } 0$$

5.4. #12. Let $f(x) := \ln x$ and g(x) := x for all 0 < x < 1. Then, for all $a \in (0, 1)$,

$$\int_{a}^{1} \ln(x) \, \mathrm{d}x = \int_{a}^{1} f(x)g'(x) \, \mathrm{d}x = f(1)g(1) - f(a)g(a) - \int_{a}^{1} f'(x)g(x) \, \mathrm{d}x$$
$$= -a\ln(a) - (1-a).$$

By the l'Hôpital's rule,

$$\lim_{a \downarrow 0} a \ln(a) = \lim_{a \downarrow 0} \frac{\ln(a)}{1/a} = \lim_{a \downarrow 0} \frac{1/a}{-1/a^2} = 0.$$

Therefore, $\int_0^1 \ln(x) dx = \lim_{a \downarrow 0} \int_a^1 \ln(x) dx = -1$, and in particular converges.