
Math 3210–1, Summer 2016
Solutions to Assignment 10

5.3. #3. Let f(x) :=
∫ x

0
sin(t2) dt and g(x) = x2 for all x ∈ R. We are asked to find

d

dx

∫ x2

0

sin(t2) dt =
d

dx
(f ◦ g)(x).

Apply the chain rule: (f ◦ g)′ = (f ′ ◦ g)g′. Now, g′(x) = 2x for all x; and f ′(x) =
sin(x2) by the fundamental theorem of calculus [this is because sin(t2) is a differentiable
function on R]. Therefore,

d

dx
(f ◦ g)(x) = f ′(g(x))g′(x) = 2x sin(x4).

5.3. #4. Let f(x) :=
∫ x

0
exp(−t2) dt for all t ∈ R in order to see that

f ′(x) = e−x
2

,

owing to the fundamental theorem of calculus.

We are asked to find

d

dx

∫ x

1/x

e−t
2

dt =
d

dx
(f(x)− f(1/x)) = f ′(x)− f ′(1/x)

[
− 1

x2

]
= f ′(x) +

f ′(1/x)

x2
.

Combine the above two facts to see that

d

dx

∫ x

1/x

e−t
2

dt = exp(−x2) + x−2 exp(−1/x2).

5.3. #5. f(x) = 1/x2 is not integrable near 0; therefore, the mentioned theorem does not
apply.

5.3. #6. Define g(x) = f(x) for all x. Then, for all −∞ < a ≤ b <∞,∫ b

a

f(x)f ′(x) dx = f 2(b)− f 2(a)−
∫ b

a

f(x)f ′(x) dx.

Solve for the integral: ∫ b

a

f(x)f ′(x) dx =
f 2(b)− f 2(a)

2
.
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5.3. #9. Let g(x) = f(x) for all x 6= c and g(c) 6= f(c). Define h(x) := g(x)− f(x) for all
x ∈ R. Then, h(x) = 0 for all x 6= c and h(c) := g(c)− f(c) 6= 0. Our goal is to prove

that
∫ b

a
h(x) dx = b− a.

Method 1. Perhaps the simplest proof is this: Define Pn to be the following partition
of [a , b]: Pn = {x0 , x1 , x2 , x3}, where

x0 = a, x1 = c− n−1, x2 = c + n−1, x3 = b.

Of course, this makes sense only if x1, x3 ∈ (1 , b). That is, c+n−1 < b and c−n−1 > a;
equivalently, n > N := max{(b− c)−1 , (c− a)−1}.
Now, for every n > N , U(f , Pn) = M1(x1 − x0) + M2(x2 − x1) + M3(x3 − x2) = 2/n
and L(f , Pn) = 0, manifestly. Therefore, for every ε > 0,

U(h , Pn) = U(h , Pn)− L(h , Pn) ≤ ε ∀n > max
(
ε−1 , N

)
.

It follows that
∫ b

a
f =

∫ b

a
h = 0. Therefore,

∫ b

a
h = 0.

Method 2. Let F (z) :=
∫ z

a
h for all z ∈ [a , b]. Then, F is continuous on (a , b) [by the

fundamental theorem of calculus]. If z ∈ (a , c), then

F (c) = F (c)− F (a) = (F (c)− F (z)) + (F (z)− F (a)) .

Since f(x) = g(x) every x ∈ [a , z], we can deduce that h = 0 on [a , z] and hence
F (z) − F (a) =

∫ z

a
h = 0. Therefore, F (c) − F (a) = F (c) − F (z) for all z ∈ (a , c).

Let z → c and appeal to continuity to see that F (c) − F (a) = F (c) − limz→c F (z) =
F (c)− F (c) = 0. Consequently, F (c) = F (a), which is zero.

5.4. #9. This is an improper integral; that is,∫ ∞
1

dx

xp
= lim

a→∞

∫ a

1

dx

xp
.

If p 6= 1, then for all a > 1, ∫ a

1

dx

xp
=

a1−p

1− p
− 1

1− p
.

If p > 1, then a1−p → 0 as a→∞; and hence∫ ∞
1

dx

xp
= − 1

1− p
=

1

p− 1
if p > 1.

On the other hand, a1−p → ∞ as a → ∞; therefore,
∫∞
a

x−pdx diverges. Finally, if
p = 1, then ∫ a

1

dx

x
= ln(a)→∞ as a→∞.

Therefore, the integral diverges in that case, as well.
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Actually, it is not so easy to give an honest proof that lima→∞ ln(a) = ∞. So let me
do that here as well. [It is not so easy to prove this because we have not rigorously
proved that its inverse exp(a) goes to infinity as a→∞.] If k > 1 is an integer, then

ln(ek) =

∫ exp(k)

1

dx

x
=

k−1∑
j=0

∫ exp(j+1)

exp(j)

dx

x
,

thanks to the additive nature of the Riemann integral. If x is between ej and ej+1,
then 1/x ≥ e−(j+1), and hence by Theorem 5.2.4,

ln(ek) ≥
k−1∑
j=0

∫ exp(j+1)

exp(j)

exp(−j−1) dx =
k−1∑
j=0

[
ej+1 − ej

]
e−j−1 =

k−1∑
j=0

(
1− e−1

)
= k

(
1− e−1

)
.

Therefore, ln(ek) → ∞ as k → ∞. In particular, for all N ∈ N there exists K ∈ N
such that ln(ek) ≥ N for all k ≥ K. Since ln is increasing, ln(a) ≥ N for all a ≥ eK as
well. Therefore, lima→∞ ln(a) =∞.

5.4. #10. This is an improper integral:
∫ 1

0
x−pdx = lima↓0

∫ 1

a
x−pdx. Now, for all a ∈ (0 , 1),

∫ 1

a

dx

xp
=

− ln(a) if p = 1,
1− a1−p

1− p
if p 6= 1.

Therefore,
∫ 1

0
x−pdx converges if and only if 0 < p < 1, in which case,∫ 1

0

dx

xp
=

1

1− p
when 0 < p < 1.

5.4. #12. Let f(x) := ln x and g(x) := x for all 0 < x < 1. Then, for all a ∈ (0 , 1),∫ 1

a

ln(x) dx =

∫ 1

a

f(x)g′(x) dx = f(1)g(1)− f(a)g(a)−
∫ 1

a

f ′(x)g(x) dx

= −a ln(a)− (1− a).

By the l’Hôpital’s rule,

lim
a↓0

a ln(a) = lim
a↓0

ln(a)

1/a
= lim

a↓0

1/a

−1/a2
= 0.

Therefore,
∫ 1

0
ln(x) dx = lima↓0

∫ 1

a
ln(x) dx = −1, and in particular converges.

3


