Math 3210-1, Final Exam

Thursday August 4, 2016

1. Prove that $\sqrt{5}$ is an irrational number.

Solution. By Theorem 1.3.9, if $k \in \mathbb{Z}$, then all rational solutions to the equation $x^2 = k$ are integers. in particular, set k = 5 to see that if $\sqrt{5}$ were rational then it would have to be an integer. Now it is easy to see that $2 < \sqrt{5} < 3$, whence $\sqrt{5} \notin \mathbb{Z}$.

- 2. Suppose that a_1, a_2, \ldots is a sequence of real numbers that satisfy $a_n < 1$ for all $n \in \mathbb{N}$.
 - (a) (5 points) Prove that $\limsup_{n\to\infty} a_n \leq 1$.
 - (b) (5 points) Can one improve the preceding to $\limsup_{n\to\infty} a_n < 1$? Justify your answer.

Solution. (a) Because 1 is an upper bound for $\{a_n\}_{n=1}^{\infty}$, 1 is greater than or equal to the smallest upper bound for $\{a_n\}_{n=1}^{\infty}$. In other words, $\sup_{n\geq 1} a_n \leq 1$. Therefore in particular, $s_k = \sup_{n\geq k} a_n \leq 1$ for all $k \geq 1$. Let $k \to \infty$ to see that $\limsup_{n\to\infty} a_n = \lim_{k\to\infty} s_k \leq 1$, thanks to the definition of $\limsup_{n\to\infty} a_n = \lim_{k\to\infty} s_k \leq 1$.

(b) No. For instance, consider the sequence $a_n = 1 - e^{-n}$ for all $n \ge 1$.

- 3. Let $\alpha > 0$ be fixed.
 - (a) Prove that if $\alpha \leq 1$, then $(1+x)^{\alpha} \leq 1 + \alpha x \ \forall x \geq 0$.
 - (b) Prove that if $\alpha > 1$, then $(1 + x)^{\alpha} \ge 1 + \alpha x \ \forall x \ge 0$.

Solution. Define $f(x) = (1+x)^{\alpha} - \alpha x \quad \forall x \ge 0$. Then f is differentiable on $(0, \infty)$ and continuous on [0, 1]; moreover, $f'(x) = \alpha(1+x)^{\alpha-1} - \alpha \quad \forall x > 0$. If $\alpha \in (0, 1]$, then $(1+x)^{\alpha-1} \le 1$, whence $f'(x) \le 0$ for all x > 0. In particular, $f(x) \le f(0) = 1$ for all x. This proves (a).

Conversely, if $\alpha > 1$ then $(1+x)^{\alpha-1} > 1$, whence f'(x) > 0 for all x > 0. In particular, $f(x) \ge f(0) = 1$ for all x. This proves (b).

4. Let $f : [0,1] \to \mathbb{R}$ be an integrable function, and define g(x) = f(x) for all $x \in [0,1]$ except x = 1/2. Define g(1/2) = c for an arbitrary $c \neq f(1/2)$. Prove that g is integrable and $\int_0^1 g = \int_0^1 f$.

Solution. Let g(x) = f(x) for all $x \neq 1/2$ and $g(1/2) \neq f(1/2)$. Define h(x) := g(x) - f(x) for all $x \in \mathbb{R}$. Then, h(x) = 0 for all $x \neq 1/2$ and $h(1/2) := g(1/2) - f(1/2) \neq 0$. Our goal is to prove that h is integrable and $\int_a^b h(x) dx = 0$. Define P_n to be the following partition of [a, b]: $P_n = \{x_0, x_1, x_2, x_3\}$, where

$$x_0 = 0$$
, $x_1 = \frac{1}{2} - n^{-1}$, $x_2 = \frac{1}{2} + n^{-1}$, $x_3 = 1$.

Of course, this makes sense only if $x_1, x_3 \in (0, 1)$. That is, $\frac{1}{2} + n^{-1} < 1$ and $\frac{1}{2} - n^{-1} > 0$; equivalently, n > 2. Now, for every n > 2,

$$U(f, P_n) = M_1(x_1 - x_0) + M_2(x_2 - x_1) + M_3(x_3 - x_2) = 2/n$$
 and $L(f, P_n) = 0.$

Therefore, for every $\varepsilon > 0$,

$$U(h, P_n) = U(h, P_n) - L(h, P_n) = \frac{2}{n} \le \varepsilon \qquad \forall n > \max\left(\varepsilon^{-1}, 2\right).$$

It follows that $\overline{\int}_{a}^{b} f = \underline{\int}_{a}^{b} h = 0$. Therefore, h is integrable and $\int_{a}^{b} h = 0$.

5. Suppose $f, g, h : [a, b] \to \mathbb{R}$ are three integrable functions on a bounded and closed interval [a, b]. Prove that F(x) := f(x)g(x)h(x) defines an integrable function on [a, b]. If you use any results from the textbook and/or homework then you should recall the result carefully. There is no need to prove those results here though.

Solution. q = fg is integrable by a theorem in the textbook. Therefore, F = qh is integrable.

- 6. Let $f(x) = e^{-1/|x|}$ for all nonzero $x \in \mathbb{R}$, and f(0) := 0.
 - (a) (10 points) Prove that f differentiable at x = 0 and f'(0) = 0.
 - (b) (10 points; extra credit) Does f' exist at any other $x \neq 0$? Justify your answer.

Solution. (a) For all $x \neq 0$,

$$\left|\frac{f(x) - f(0)}{x} - 0\right| = \frac{\exp(-1/|x|)}{|x|}$$

We saw in a problem session that $r^{-1} \exp(-1/r) \to 0$ as $r \downarrow 0$. Similarly, $(-r) \exp(1/r) \to 0$ as $r \uparrow 0$. This proves that $\lim_{x\uparrow 0} \frac{f(x)-f(0)}{x-0} = \limsup_{x\downarrow 0} \frac{f(x)-f(0)}{x} = 0$. Therefore, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$, which in turn implies that f is differentiable at x = 0 and f'(0) = 0.

(b) Yes, and for simple reasons: If x > 0, then $f(x) = \exp(-1/x)$, which is a composition of a function that is differentiable everywhere [the exponential function] with a function that is differentiable at every x > 0 [the function -1/x]. Therefore, f is differentiable at every point x > 0, and $f'(x) = x^{-2} \exp(-1/x)$ for all x > 0. Similarly, $f(x) = \exp(1/x)$ [x < 0] is differentiable at every point x < 0 and the derivative is $f'(x) = -x^{-2} \exp(1/x)$ for all x < 0. In other words,

$$f'(x) = \begin{cases} \frac{\operatorname{sign}(x)e^{-1/|x|}}{x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$