Math 3070-1, Fall 2009 Solutions to Homework 7

6.2. (a) Remember that independent normals add to a normal random variable; their means add; and their variances add. Therefore,

$$
T \stackrel{\mathcal{D}}{=} N(500,121)
$$

(b) We are asked to compute $P\{T>520\}$. So we transform 520 grams into standard units:

$$
\frac{520-500}{\sqrt{121}}=1.81818181818
$$

The answer is the area to the right of 1.81818181818 under the standard-normal curve; i.e.,

$$
P\{T>520\} \simeq 1-0.9656=0.0344
$$

(c) We expect each toy to weigh 500 grams; therefore, 24 toys weigh a total of $24 \times 500=12,000$ grams [or 12 kilograms]. This and the 200 grams [for the box] together yield a total weight of 12,200 grams [or 12.2 kilos]. The variances add: Each toy has variance 121 grams; therefore the total variance or give and take squared-is $24 \times 121=2,904$ grams squared [or 2.904 kilogram squared].
(d) The total weight of the box is $200+$ the sum of 24 independent normals. Therefore, its distribution is $N(12200,2904)$. In particular, the probability that the total weight is more than 12300 grams is the probability that a standard normal is at least

$$
\frac{12300-12200}{\sqrt{2904}} \simeq 1.86
$$

that probability is $1-0.9686=0.0314$ [the answer!!].
6.4. (a) Since \bar{X} is $N(2,0.04)$,

$$
\begin{aligned}
P\{1.9<\bar{X}<2.1\} & =P\left\{\frac{1.9-2}{\sqrt{0.04}}<N(0,1)<\frac{2.1-2}{\sqrt{0.04}}\right\} \\
& =P\{-0.1<N(0,1)<0.1\} \\
& \simeq 0.08
\end{aligned}
$$

(b) Since \bar{X} is distributed as $N(2,4 / n)$,

$$
\begin{aligned}
P\{1.9<\bar{X}<2.1\} & =P\left\{\frac{1.9-2}{\sqrt{4 / n}}<N(0,1)<\frac{2.1-2}{\sqrt{4 / n}}\right\} \\
& =P\{-0.05 \sqrt{n}<N(0,1)<0.05 \sqrt{n}\}
\end{aligned}
$$

In order for this probability to be 0.9 , the area to the left of $0.05 \sqrt{n}-$ under the $N(0,1)$ distribution-must be 0.95 . The normal table tells us that $0.05 \sqrt{n}=1.645$. Solve to obtain:

$$
n=\left(\frac{1.645}{0.05}\right)^{2} \simeq 1,082.41
$$

Therefore, n has to be around 1082 or 1083 .
6.12. You need to draw a picture [as discussed in the lectures] in order to follow this.
(a) We want to use a χ_{10}^{2} table; the area to the left of a is 0.05 ; and the area to the left of b is 0.95 . Therefore, $a=3.94$ and $b=18.307$.
(b) We want to use a χ_{15}^{2} table; the area to the left of a is 0.05 ; and the area to the left of b is 0.95 . Therefore, $a=7.261$ and $b=24.996$.
(c) We want to use a χ_{10}^{2} table; the area to the left of a is 0.025 ; and the area to the left of b is 0.975 . Therefore, $a=3.247$ and $b=20.483$.
(d) We want to use a χ_{20}^{2} table; the area to the left of a is 0.025 ; and the area to the left of b is 0.975 . Therefore, $a=9.591$ and $b=34.170$.
6.16. According to Theorem $6.4,(n-1) S^{2} / \sigma^{2}$ is distributed according to χ_{n-1}^{2}.
(a) Therefore,

$$
\begin{aligned}
P\{S<0.0522\} \simeq P\left\{S^{2}<0.003\right\} & =P\left\{\frac{(n-1) S^{2}}{\sigma^{2}}<\frac{13 \times 0.00272484}{0.001764}\right\} \\
& =P\left\{\chi_{12}^{2}<20.081\right\} \simeq 0.95
\end{aligned}
$$

(b) Therefore,

$$
\begin{aligned}
P\{S>0.0556\} \simeq P\left\{S^{2}>0.003\right\} & =P\left\{\frac{(n-1) S^{2}}{\sigma^{2}}>\frac{13 \times 0.00309136}{0.001764}\right\} \\
& =P\left\{\chi_{12}^{2}>22.782\right\}
\end{aligned}
$$

and this is between 0.05 and 0.025 .
6.20. (a) $F_{3,20}(0.05)=3.10$.
(b) $F_{3,20}(0.01)=4.94$.
(c) $F_{4,30}(0.05)=2.69$.
(d) $F_{4,30}(0.01)=4.02$.

