
Math 2200 – Discrete Mathematics
Summer 2015

Instructor: Davar Khoshnevisan (davar@math.utah.edu)
Department of Mathematics, University of Utah

Text: Discrete Mathematics by K.H. Rosen,
McGraw Hill, NY, Seventh Edition, 2011

Contents

1 Introduction 3
1.1 Some Questions . 3
1.2 Topics Covered . 4

2 Elementary Logic 5
2.1 Propositional Logic . 5
2.2 Equivalences and Tautologies . 7
2.3 Predicates and Quantifiers . 9

3 Logic in Mathematics 13
3.1 Some Terminology . 13
3.2 Proofs . 14

3.2.1 Proof by Exhaustion . 14
3.2.2 Proof by Contradiction . 14
3.2.3 Proof by Induction . 15

4 Naive Set Theory 20
4.1 Some Terminology . 20
4.2 The Calculus of Set Theory . 22
4.3 Set Identities . 27

5 Transformations 29
5.1 Functions . 29
5.2 The Graph of a Function . 31
5.3 One-to-One Functions . 34
5.4 Onto Functions . 35
5.5 Inverse Functions . 36
5.6 Composition of Functions . 37
5.7 Back to Set Theory: Cardinality 38

6 Patterns and Sequences 45
6.1 Recurrence Relations . 45
6.2 Infinite Series . 47
6.3 Continued Fractions . 49

7 Elements of Number Theory 53
7.1 Division . 53
7.2 Modular Arithmetic . 55
7.3 Representation of Integers . 56
7.4 Examples of Binary Arithmetic 58

1

7.5 Prime Numbers . 60
7.6 Divisibility Rules . 63
7.7 GCDs, LCMs, and the Euclidean Algorithm 65

8 Elements of Cryptography 69
8.1 Symmetric Ciphers . 69
8.2 Fancier Symmetric Coding Methods 71
8.3 Asymmetric Cryptography . 72

9 Modular Inversion 73
9.1 Bézout’s Theorem . 73
9.2 Modular Inversion . 75

2

1
Introduction

There is a story about two friends, who were classmates in high
school, talking about their jobs. One of them became a statistician and
was working on population trends. He showed a reprint to his former
classmate. The reprint started, as usual, with the Gaussian distribution
and the statistician explained to his former classmate the meaning of the
symbols for the actual population, for the average population, and so on.
His classmate was a bit incredulous and was not quite sure whether
the statistician was pulling his leg. “How can you know that?” was
his query. “And what is this symbol here?” “Oh,” said the statistician,
“this is π.” “What is that?” “The ratio of the circumference of the
circle to its diameter.” “Well, now you are pushing your joke too far,“
said the classmate, “surely the population has nothing to do with the
circumference of the circle.”

...
...

...
...

The preceding two stories illustrate the two main points which are
the subjects of the present discourse. The first point is that mathemat-
ical concepts turn up in entirely unexpected connections. Moreover,
they often permit an unexpectedly close and accurate description of
the phenomena in these connections. Secondly, just because of this
circumstance, and because we do not understand the reasons of their
usefulness, we cannot know whether a theory formulated in terms of
mathematical concepts in uniquely appropriate. We are in a position
similar to that of a man who was provided with a bunch of keys and
who, having to open several doors in succession, always hit on the right
key on the first or second trial.

–Eugene Paul Wagner1

1.1. Some Questions

- Is mathematics a natural science, or is it a human invention?

- Is mathematics the science of laboriously doing the same things over
and over, albeit very carefully? If yes, then why is it that some people
discover truly-novel mathematical ideas whereas many others do not?

1“The unreasonable effectiveness of mathematics in the natural sciences,” Communications
in Pure and Applied Mathematics (1960) vol. 13, no. 1.

3

Or, for that matter, why can’t we seem to write an algorithm that does
new mathematics for us? If no, then is mathematics an art?

- Is mathematics a toolset for doing science? If so, then why is it that
the same set of mathematical ideas arise in so many truly-different
scientific disciplines? Is mathematics a consequence of the human
condition, or is it intrinsic in the physical universe?

- Why is it that many people are perfectly comfortable saying some-
thing like, “I can’t do mathematics,” or “I can’t draw,” but very few are
comfortable saying, “I can’t read,” or “I can’t put on my socks in the
morning”?

- Our goal, in this course, is to set forth elementary aspects of the lan-
guage of mathematics. The language can be learned by most people,
though perhaps with effort. Just as most people can learn to read or
put on their socks in the morning. [What one does with this elaborate
language then has to do with one’s creativity, intellectual curiosity, and
other less tangible things.]

1.2. Topics Covered

- Propositional Logic, Modus Ponens, and Set Theory [Chapters 1-2]

- Algorithms [Chapter 3]

- Number Theory and Cryptography [Chapter 4]

- Induction and Recursion [Chapter 5]

- Enumerative Combinatorics and Probability [Chapters 6–8]

- Topics from logic, graph theory, and computability.

4

2
Elementary Logic

2.1. Propositional Logic

According to the Merriam-Webster online dictionary, “Logic” could mean
any one of the following:

- A proper or reasonable way of thinking about or understanding some-
thing;

- A particular way of thinking about something; and/or

- The science that studies the formal processes used in thinking and
reasoning.

“Propositional logic” and its natural offspring, predicate logic, are early at-
tempts to make explicit this process. Propositional logic was developed in
the mid-19th century by Augustus DeMorgan, George Boole, and others,
and is sometimes also referred to as “naive logic,” or “informal logic.” The
first part of this course is concerned with the development of propositional
logic.

The building blocks of propositional logic are “propositions,” and “rules
of logic.” A proposition is a statement/declaration which is, by definition,
either true or false, but not both. If a proposition � is true, then its truth
value is “true” or “T.” If � is false, then its truth value is “false” or “F.”

Example 2.1. Here are some simple examples of logical propositions:

1. “It is now 8:00 p.m.” is a proposition.

2. “You are a woman,” “He is a cat,” and “She is a man” are all propositions.

3. “�2 + �2 = �2” is not a proposition, but “the sum of the squares of
the sides of a triangle is equal to the square of its hypotenuse” is a
proposition. Notice that, in propositional logic, you do not have to
represent a proposition in symbols.

The rules of logic—essentially also known as Modus Ponens—are an
agreed-upon set of rules that we allow ourselves to use in order to build
new propositions from the old. Here are some basic rules of propositional
logic.

5

NOT. If � is a proposition, then so is the negation of �, denoted by ¬� [in
some places, not here, also ∼ �]. The proposition ¬� declares that
“proposition � is not valid.” By default, the truth value of ¬� is the
opposite of the truth value of �.

Example 2.2. If � is the proposition, “I am taking at least 3 courses this
summer,” then ¬� is the proposition, “I am taking at most 2 courses
this summer.”

Here is the “truth table” for negation.

� ¬�
T F
F T

AND. If � and � are propositions, then their conjunction is the proposition
“� and � are both valid.” The conjunction of � and � is denoted by
� ∧�. The truth value of � ∧� is true if � and � are both true; else, the
truth value of � ∧ � is false. Here is the “truth table” for conjunctive
propositions.

� � � ∧ �
T T T
T F F
F T F
F F F

OR. Similarly, the disjunction of two propositions � and � is the proposi-
tion, “at least one of � and � is valid.” The disjunction of � and � is
denoted by � ∨ �.

Example 2.3. Suppose � denotes the proposition, “I am cold,” and �
the proposition, “I am old.” Then � ∧ � denotes the proposition, “I am
cold and old,” and � ∨ � is the proposition, “I am either cold or old or
both.” Equivalently, � ∨ � denotes “� [inclusive-] or �.”

Here is the “truth table” for disjunctive propositions.

� � � ∨ �
T T T
T F T
F T T
F F F

XOR. The exclusive or of propositions � and � is the proposition, “either �
is valid, or � , but not both.” The exclusive or of � and � is denoted by
� ⊕ �. Here is the “truth table” for the logical operation exclusive or.

6

� � � ⊕ �
T T F
T F T
F T T
F F F

IF THEN. The proposition “� implies �” [also “if � then �”]—denoted by � → �—is
a conditional statement. It denotes the proposition, “if � were true,
then so would be �.”

Example 2.4. The following are 2 examples of conditional proposi-
tions:

1. If I were elected, then I would lower taxes;
2. If I were a dog, then I would eat dog food;
3. If you eat your meat, then you can have your pudding.

Here is the “truth table” for conditional propositions.

� � � → �
T T T
T F F
F T T
F F T

IFF. The proposition “� if and only if �”—denoted by � ↔ �—is a bicondi-
tional proposition; it is true if and only if both conditional statements
� → � and � → � are valid.

Example 2.5. Let � denote the proposition, “you can have your pud-
ding,” and � the proposition, “you can eat your meat.” Then, � ↔ � is
the assertion that “you can have your pudding if and only if you have
your meat.”

Here is the “truth table” for biconditional propositions.

� � � ↔ �
T T T
T F F
F T F
F F T

2.2. Equivalences and Tautologies

One can sometimes use known/available propositions, and combine them
in order to form new, compound, propositions.

7

Example 2.6. As a simple example, consider the proposition ¬� ∨ � , build
from two propositions � and � , using both negation and conjunction. Here
is the truth table for this particular compound proposition.

� � ¬� ∨ �
T T T
T F F
F T T
F F T

Example 2.7. For a second [perhaps more interesting] example, consider
the truth table for the compound propositions � → � and ¬� → ¬�.

� � � → � ¬� → ¬�
T T F F
T F T T
F T F F
F F F F

Example 2.8. Here is the truth table for the proposition, “� ∧ (¬�) � � ∧ �.”

� � � ∧ (¬�) � ∧ � � ∧ (¬�) � � ∧ �
T T F T T
T F T F F
F T F F T
F F F F T

• We say that propositions � and � are equivalent if they have the same
truth table. We write � ≡ � when � and � are equivalent.

Example 2.9. Check the following from first principles:

– ¬(¬�) ≡ �. Another way to say this is that the compound propo-
sition “−(¬�) ↔ �” is always true;

– (� ∧ �) ≡ (� ∧ �). Another way to say this is that the compound
proposition “(� ∧ �) ↔ (� ∧ �)” is always true;

– (� ∨ �) ≡ (� ∨ �). Another way to say this is that the compound
proposition “(� ∨ �) ↔ (� ∨ �)” is always true.

• A proposition is a tautology if it is always true, and a fallacy if it is
always false. Thus, � ≡ � is the same proposition as “� ↔ � is a
tautology.”

Example 2.10. If � is a proposition, then ¬� ∨ � is a tautology and
¬� ∧ � is a fallacy. One checks these by computing truth tables:

8

� ¬� ¬� ∨ � ¬� ∧ �
T F T F
T F T F
F T T F
F T T F

In casual conversation, the word “tautology” is sometimes equated with
other words such as “self-evident,” “obvious,” or even sometimes “triv-
ial.” In propositional logic, tautologies are not always obvious. All
theorems of mathematics and computer science qualify as logical tau-
tologies, but many are far from obvious and the like. If “� ≡ � ,” then
we may think of � and � as the same proposition.

• There are infinitely-many tautologies in logic; one cannot memorize
them. Rather, one learns the subject. Still, some tautologies arise
more often than others, and some have historical importance and have
names. So, educated folk will want to know and/or learn them. Here
are two examples of the latter type.

Example 2.11 (De Morgan’s Laws). The following two tautologies are
known as De Morgan’s Laws: If � and � are propositions, then:

¬(� ∧ �) ≡ ¬� ∨ ¬�;
¬(� ∨ �) ≡ ¬� ∧ ¬��

You can prove them by doing the only possible thing: You write down
and compare the truth tables. [Check!]

2.3. Predicates and Quantifiers

It was recognized very early, in the 19th century, that one needs a more
flexible, more complex, set of logical rules in order to proceed with more
involved logical tasks. For instance, we cannot use propositional logic to
ascertain whether or not “� = 2� + 1.” In order to do that, we also need to
know the numerical values of the “variables” � and �, not to mention some
of the basic rules of addition and multiplication [i.e., tables]. “Predicate logic”
partly overcomes this definiciency by: (i) including the rules of propositional
logic; and (ii) including “variables” and “[propositional] functions.”

• A propositional function P(�) is a proposition for every possible choice
of the variable �; P is referred to as a predicate.

Example 2.12. Let P(�) denote “� ≥ −1/8 for every real number �.
Then, P(1) is a true proposition, whereas P(−1) is a false one.

Example 2.13. The variable of a proposition need not be a real num-
ber. For instance, P(� � �) could denote the proposition, “� + � = 1.”
In this case, the variable of P is a 2-vector (� � �) for every possible

9

real number � and �. Here, for instance, P(1 � 1) is false, whereas
P(5�1 � −4�1) is true. You can think of the predicate P, in English terms
and informally, as the statement that the point (� � �) falls on a certain
straight line in the plane.

Predicate logic has a number of rules and operations that allow us to
create propositions from predicates. Here are two notable operations:

FOR ALL. If P is a predicate, then ∀�P(�) designates the proposition, “P(�) for
all �” within a set of possible choices for �. The “for all” operation
∀ is a quantifier for P(�), and that set of possible choices of � is the
domain of the quantifier ∀ here. If the domain D is not universal [“for
all real numbers �” and the like], then one includes the domain by
saying, more carefully, something like ∀�P(�)[� ≥ 0], or ∀�P(�)[(� ≥
−2) ∨ (� ≤ 5)], etc.

Example 2.14. Suppose P(�) if the proposition that “� > 2,” for every
real number �. Then ∀�P(�) is false; for example, that is because P(0)
is false. But ∀�P(�)[� ≥ 8] is true.

FOR SOME. If P is a predicate, then ∃�P(�) designates the proposition, “P(�) for
some �” within a set of possible choices for �. The “there exits” oper-
ation ∃ is a quantifier for P(�), and that set of possible choices of � is
the domain of the quantifier ∃ here.

Example 2.15. Suppose P(�) if the same proposition as before for
every real number �: That “� > 2�” Then ∃�P(�) is true; for example,
that is because P(3) is true. But ∃�P(�)[� ≤ 0] is false.

• (De Morgan’s Laws for Quantifiers) We have the following tautologies:

¬∃�P(�) ≡ ∀�¬P(�);
¬∀�P(�) ≡ ∃�¬P(�)�

One proves these De Morgan laws by simply being careful. For in-
stance, let us verify the first one. Our ask is two fold:

1. We need to show that if ¬∃�P(�) is true then so is ∀�¬P(�); and
2. We need to show that if ∀�¬P(�) is true then so is ¬∃�P(�).

We verify (1) as follows: If ¬∃�P(�) were true, then ∃�P(�) is false.
Equivalently, P(�) is false for all � [in the domain of the quantifier] and
hence ¬P(�) is true for all � [also in the domain of the quantifier]. This
yields ∀�¬P(�) as true and completes the proof of (1). I will leave the
proof of (2) up to you.

Example 2.16. The negation of “Everyone is smelly” is “someone is
not smelly.” In order to demonstrate this using predicate logic, let P(�)

10

denote “� is smelly.” Then, “everyone is smelly” is codified as ∀�P(�);
its negation is ∃�¬P(�), thanks to the De Morgan laws. I will leave it
up to you to do the rest.

Example 2.17. The negation of “Someone will one day win the jackpot”
is “no one will ever win the jackpot.” In order to demonstrate this
using predicate logic, let P(� � �) denote “� will win the jackpot on
day �.” Then, “someone will win the jackpot one day” is codified as
∃(� � �)P(� � �), whose negation is—thanks to De Morgan’s laws—the
proposition ∀(� � �)¬P(� � �). As an important afterthought, I ask, “What
are the respective domains of these quantifiers?”

• Predicate logic allows us to define new predicates from old. For in-
stance, suppose P(� � �) is a predicate with two variables � and �. Then,
∀�P(� � �), ∃�P(� � �), . . . are themselves propositional functions [the
first is a function of � and the second of �].

• Some times, if the expressions become too complicated, one separates
the quantifiers from the predicates by a colon. For instance,

∀�∀�∀�∀α∃βP(� � � � � � α � β)

can also be written as

∀�∀�∀�∀α∃β : P(� � � � � � α � β)�

in order to ease our reading of the logical “formula.”

Example 2.18. See if you can prove [and understand the meaning of]
the tautologies:

∀(� � �)P(� � �) ≡ ∀�∀�P(� � �) ≡ ∀�∀�P(� � �);
∃(� � �)P(� � �) ≡ ∃�∃�P(� � �) ≡ ∃�∃�P(� � �);

¬
�

∀�∃�P(� � �) ≡ ∃�∀�P(� � �)
�

�

Example 2.19. A real number � is said to be rational if we can write
� = �/� where � and � are integers. An important discovery of the
mathematics of antiquity—generally ascribed to a Pythagorean named
Hippasus of Metapontum (5th Century B.C.)—is that

√
2 is irrational;

that is, it is not rational. We can write this statement, using predicate
logic, as the following tautology:

¬∃�� � :
√

2 = �
� [�� � ∈ Z]�

where Z := {0 � ±1 � ±2 � · · · } denotes the collection of all integers, “:=”
is shorthand for “is defined as,” and “∈” is shorthand for “is an element
of.”

11

Example 2.20. Fermat’s last theorem, as conjectured by Pierre de
Fermat (1637) and later proved by Andrew Wiles (1994/1995), is the
tautology,

¬
�

∃�∃�∃�∃� P(� � � � � � �)
�

[(�� �� � ∈ N) ∧ (� ∈ {3 � 4 � � � �})] �

where every P(� � � � � � �) denotes the proposition, “�� + �� = ��.”

Example 2.21. In calculus, one learns that a function � of a real vari-
able � is continuous if, and only if, for every ε > 0 there exists δ > 0
such that |� (�) − � (�)| ≤ ε whenever |� − �| ≤ δ. We can state this
definition, as a proposition in predicate logic as

∀ε∃δP(ε � δ) [ε > 0 ∧ δ > 0]�

where each P(ε � δ) denotes the following proposition:

∀�� �Q(� � � � ε) [−∞ < � < ∞ ∧ � − δ < � < � + δ]�

and every Q(� � � � ε) denotes the event that |� (�) − � (�)| ≤ ε.

12

3
Logic in Mathematics

3.1. Some Terminology

• In mathematics [and related fields such as theoretical computer science
and theoretical economics], a theorem is an assertion that:

1. Can be stated carefully in the language of logic [for instance, the
logical systems of this course, or more involved ones]; and

2. Is always true [i.e., a tautology, in the language of predicate logic].

• Note that, in the preceding, “true” is underlined to emphasize that it
is meant in the sense of the logical system being used [explicitly], and
therefore can be demonstrated [in that same logical system] explicitly.

• Officially speaking, Propositions, lemmas, fact, etc. are also theorems.
However, in the culture of mathematical writing, theorems are deemed
as the “important” assertions, propositions as less “important,” and lem-
mas as “technical” results en route establishing theorems. I have put
quotations around “important” and “technical” because these are sub-
jective annotations [usually decided upon by whoever is writing the
mathematics].

• Officially speaking, a Corollary is also a theorem. But we call a propo-
sition a “corollary” when it is a “simple” or “direct” consequence of
another fact.

• A conjecture is an assertion that is believed to be true, but does not
yet have a logical proof.

• Frequently, one writes the domain of the variables of a mathematical
proposition together with the quantifiers, rather than at the end of the
proposition. For instance, consider the tautology,

∀�� � : �
� > 0 [� > 0 ∧ � > 0]�

Stated in English, the preceding merely says that if you divide two
[strictly] positive numbers then you obtain a positive number. In math-
ematics, we prefer to write instead of the preceding symbolism the

13

following:

∀�� � > 0 : �
� > 0; or sometimes ∀� > 0� ∀� > 0 : �

� > 0�

3.2. Proofs

There is no known algorithm for proving things just as there is no known
algorithm for living one’s life and/or for having favorite foods. Still, one
can identify some recurring themes in various proofs of well-understood
mathematical theorems.

3.2.1 Proof by Exhaustion

Perhaps the simplest technique of proof is proof by exhaustion. Instead
of writing a silly general definition, I invite you to consider the following
example.

Proposition 3.1. There are 2 even integers between 3 and 7.

Proof. Proof by exhaustion does what it sounds like it should: In this case,
you list, exhaustively, all even integers between 3 and 7. They are 4 and
6.

Or you can try to prove the following on your own, using the method of
exhaustion.

Proposition 3.2. 2� < 2� for every integer � between 3 and 1000.

Enough said.

3.2.2 Proof by Contradiction

Recall that � → � is equivalent to ¬� → ¬�. The idea of proof by contradic-
tion—also known as proof by contraposition—is that, sometimes, it is easier
to prove ¬� → ¬� rather than � → �. I will cite a number of examples. The
first is a variation of the socalled pigeonhole principle to which we might
return later on.

Proposition 3.3. If �1 and �2 are two real numbers and �1 +�2 ≥ 10, then
at least one of �1 and �2 is ≥ 5. More generally, if �1 + · · · + �� ≥ �, all
real numbers, then �� ≥ �/� for some 1 ≤ � ≤ �.

Proof. The second statement reduces to the first when you specialize to
� = 2. Therefore, it suffices to prove the second statement. We will prove
its contrapositive statement. That is, we will prove that �1 + · · · + �� < �
whenever �� < �/� for all 1 ≤ � ≤ �. Indeed, suppose �� < �/� for all
1 ≤ � ≤ �. Then,

�1 + · · · + �� < �
� + · · · + �

� = ��

This proves the contrapositive of the second assertion of the proposition.

14

Our next two examples are from elementary number theory.

Proposition 3.4. Suppose �2 − � + 1 is an even integer for some � ∈ N.
Then, � is odd.

Proof. If � were even, then we would be able to write � = 2� for some
positive integer �. In particular,

�2 − � + 1 = 4�2 − 2� + 1 = 2�(2� − 1)� �� �
an even integer

+1

would have to be an odd integer.

Proposition 3.5. Suppose �� � are positive integers and �� is even. Then,
at least one of � and � must be even.

Proof. If � and � were both odd, then we would be able to write � = 2� + 1
and � = 2�+1 for two non-negative integers � and �. In that case, we would
also have to have

�� = (2� + 1)(2� + 1) = 4�� + 2� + 2� + 1 = 2(2�� + � + �)� �� �
even integer

+1

be an odd number. Therefore, we have proved by contraposition that if ��
is even then at least one of � or � must be even.

The preceding also has a converse. Namely,

Proposition 3.6. Suppose �� � are positive integers and �� is odd. Then,
� and � must both be odd.

Proof. If � were even, then we would be able to write � = 2� for some
integer � ≥ 1, whence �� = 2�� is necessarily an even number. Similarly, if
� were even, then we would be able to write � = 2� for some integer � ≥ 1,
and hence �� = 2�� is even. This proves the result in its contrapositive
form.

We can combine Propositions 3.5 and 3.6 in order to deduce the follow-
ing.

Corollary 3.7. Let � and � be two positive integers. Then, �� is odd if
and only if � and � are both odd.

3.2.3 Proof by Induction

Consider a propositional function P, whose variable � ≥ 1 is an integer, and
suppose that we wanted to prove that P(�) is valid for all � ≥ 1. “Mathemat-
ical induction” is one method of proof that we could try. The method can be

15

explained quite quickly as follows: First prove, however you can, that P(1)
is true. Then prove the following assertion:

∀� ≥ 1 : P(1) ∧ · · · ∧ P(�) → P(� + 1)� (3.1)

It is easy to see why the method works when it does: P(1) is true by our
ad hoc reasoning. Since P(1) and (3.1) are true, we may appeal to (3.1)
[specialized to � = 1] in order to see that P(2) is true. Now that we know
that P(1) and P(2) are true, we apply (3.1) to deduce the truth of P(3), then
P(4), etc. We see, in � steps, that P(�) is true for every � ≥ 1. This does the
job.

The term “mathematical induction” is sometimes used in order to not mix
things up with “induction,” which is a rather different idea from logic [and,
to a lesser extent, philosophy]. We will used both terms interchangeably
since we will not discuss the second notion of induction in this course.

The idea of using induction in mathematical proofs is quite old, dating
back at least as far back as some of the writings of Plato (≈ 370 B.C.) do,
and most likely much farther back still.

Here are some examples of induction in proofs. These are all examples
from antiquity.

Proposition 3.8. For every positive integer �,

1 + · · · + � = �(� + 1)
2 � (3.2)

Definition 3.9 (Summation Notation). If �1� �2� � � � � �� are � real numbers,
then we define,

��

�=1
�� := �1 + · · · + ���

Note that “there is no �” anywhere on the right-hand side of the pre-
ceding display. Therefore, the same is true of the quantity on the left. In
other words,

��
�=1 ��,

��
θ=1 �θ ,

��
ν=1 �ν ,

��
�=1 �� , etc. all designate the same

quantity, “�1 + · · · + ��.” However, “
��

�=1 ��” is simply nonesense [why?].
With these remarks in mind, we can rewrite Proposition 3.8 in the fol-

lowing equivalent form: For every positive integer �,
��

�=1
� = �(� + 1)

2 �

Proof. The assertion is clearly true when � = 1. Suppose (3.2) holds. We
will prove that it holds also when � is replaced by � + 1. Since

�+1�

�=1
� =

��

�=1
� + (� + 1)�

16

our induction hypothesis, if (3.2) were valid for �, then

�+1�

�=1
� = �(� + 1)

2 + � + 1 = (� + 1)
��

2 + 1
�

= (� + 1)(� + 2)
2 �

This proves that (3.2) holds with � replaced by � + 1, and completes our
induction proof.

Proposition 3.10. For every positive integer �,
��

�=1
(2� − 1) = 1 + 3 + · · · + (2� − 1)� �� �

the sum of all odd integers < 2�

= �2�

Proof. The assertion holds true for � = 1. To proceed with induction, we
suppose that

��
�=1(2� − 1) = �2, and use that induction hypothesis in order

to conclude that
��+1

�=1 (2� − 1) = (� + 1)2 [sort this out!]. This will do the job.
But the induction hypothesis shows that

�+1�

�=1
(2� − 1) =

��

�=1
(2� − 1) + (2� + 1) = �2 + (2� + 1)�

which is equal to (�+1)2. Therefore, the preceding concludes the proof.

We should pause to appreciate one of the many added benefits of having
introduced good notation: Proposition 3.10 is a direct corollary of Proposi-
tion 3.8 and elementary properties of addition, without need for an elaborate
induction proof. Simply note that

��

�=1
(2� − 1) =

��

�=1
(2�) −

��

�=1
1 = 2

��

�=1
� − � = �(� + 1) − ��

where the last equality is deduced from Proposition 3.8. This does the job
because �(� + 1) − � = �2.

Challenge Exercise. Find the numerical value of 1+2+4+· · ·+2� [the sum
of all even integers between 1 and 2�, inclusive] for every positive integer
�.

The following result is perhaps a little more interesting.

Proposition 3.11. For every positive integer �,
��

�=1
�2 = �(� + 1)(2� + 1)

6 � (3.3)

17

Proof. Let P(�) designate the proposition implied by (3.3). Since 1 = 1, P(1)
is valid. Suppose P(�) is valid for some integer � ≥ 1; we aim to prove
[conditionally] that P(� + 1) is valid. By the induction hypothesis,

�+1�

�=1
�2 = �(� + 1)(2� + 1)

6 + (� + 1)2 = (� + 1)
�

�(2� + 1)
6 + � + 1

�

= (� + 1)
�

2�2 + 7� + 6
6

�
= (� + 1)

�
(� + 2)(2� + 3)

6

�
�

Since (� + 2)(2� + 3) = ([� + 1] + 1)(2[� + 1] + 1), the preceding completes the
induction step [that is, the process of proving P(�) → P(� + 1)], and hence
the proof.

Let us use this opportunity to introduce one more piece of good notation.
Definition 3.12 (Multiplication Notation). If �1� � � � � �� are real numbers,
then we sometimes denote their product as

��

�=1
�� := �1�2 · · · ���

Proposition 3.13. For every integer � ≥ 2,
��

�=2

�
1 − 1

�

�
= 1

� �

Proof. The statement is clear for � = 2. Suppose the displayed formula of
the proposition is valid for some integer �; we will use it conditionally to
prove it is valid with � replaced by � + 1. Indeed, the induction hypothesis
implies that

�+1�

�=1

�
1 − 1

�

�
=

��

�=1

�
1 − 1

�

�
×

�
1 − 1

� + 1

�
= 1

� × �
� + 1 �

which is manifestly equal to (� + 1)−1. This completes the induction step of
the proof.

Interestingly enough, the preceding proposition shows that too much
reliance on notation [without relying on one’s own thought processes] can
obfusciate the truth as well. Indeed, note that

��

�=2

�
1 − 1

�

�
= 1

2 × 2
3 × · · · × � − 2

� − 1 × � − 1
� �

Therefore, we obtain the result by cancelling terms [in the only way that
is meaningful and possible here]. Still, a completely logical proof requires
induction because � is arbitrary. [Sort this out!]

With the preceding remarks in mind, the following can be seen to be a
more interesting example.

18

Proposition 3.14. For every integer � ≥ 2,
��

�=2

�
1 − 1

�2

�
= � + 1

2� �

Proof. The statement is clear for � = 2. Suppose the displayed formula of
the proposition is valid for some integer �; we will use it conditionally to
prove it is valid with � replaced by �+1. Indeed, by the induction hypothesis,

�+1�

�=1

�
1 − 1

�2

�
=

��

�=1

�
1 − 1

�2

�
×

�
1 − 1

(� + 1)2

�
= � + 1

2� × �2 + 2�
(� + 1)2 = � + 2

2(� + 1) �

This completes the induction step of the proof.

Let us finish this section with perhaps our most historically-interesting
example thus far. The proof is a blend of induction and proof by contradic-
tion.

Proposition 3.15 (Ascribed to Hippasus, 5th Century B.C.).
√

2 is irrational.

Proof. Suppose not. Then we would be able to find positive integers �0
and �0 such that

√
2 = �0/�0. Since �2

0 = 2�2
0 , it follows that �2

0 is even,
whence also �0 is even by Proposition 3.5. Therefore we can find a positive
integer �1 such that �0 = 2�1. Because 4�2

1 = (2�1)2 = �2
0 = 2�2

0� it follows
that �2

0 = 2�2
1 , whence �2

0 is even, whence also �0 is even. Therefore, we
can write �0 := 2�1 for some positive integer �1. Now we can observe
that

√
2 = �0/�0 = �1/�1. By induction [work out the details!], we can in fact

deduce the existence of a sequence of positive integers �0 = 2�1 = 4�2 = · · ·
and �0 = 2�1 = 4�2 = · · · such that

√
2 = ��/�� for all � ≥ 0. Now a second

round of induction [check!] shows that

�� = ��−1
2 = ��−2

4 = · · · = �0
2� for all � ≥ 0�

In particular, �� < 1 as soon as � is large enough to ensure that �0/2� < 1—
that is, for all positive integers � > log2(�0). This shows that �� cannot be
a positive integer when � > log2(�0), in contrary to what we had deduced,
and yields the desired contradiction.

19

4
Naive Set Theory

4.1. Some Terminology

• A set is a collection of objects. Those objects are referred to as the
elements of the set. If A is a set, then we often write “� ∈ A” when
we mean to say that “� is an element of A.” Sometimes we also say
that “� is in A” when we mean “� ∈ A.” If and when we can write
all of the elements of A, then we denote A by {�1 � �2 � � � � � ��}, where
�1� � � � � �� are the elements of A. Note the use of curly brackets! We
write “� �∈ A,” when we mean to say that “� is not an element of A.”
More precisely,

� �∈ A ↔ ¬(� ∈ A)�

Example 4.1. The collection of all vowels in English is a set. We can
write that collection as {� � � � � � � � �}.

Example 4.2. {1 � 2} and {2 � 1} are the same set.

Example 4.3. {1 � 1 � 1}, {1 � 1}, and {1} are all the same set.

Example 4.4. We have already seen the set Z := {0 � ±1 � ±2 � � � �} of all
integers, and the set N := {1 � 2 � � � �} of all positive integers [also known
as numerals, or natural numbers]. We will sometimes also refer to Q
as the set of all rational numbers, and R as the set of all real numbers.

Example 4.5. 1 is not a set, it is a number. However, {1} is a set, and
has one element; namely, 1. You should make sure that you understand
clearly that {1} is not an element of {1}. This can be a subtle issue.
Read on only after you have completely digested it.

Example 4.6. The ordered pair (1 � 2) is not a set; it is, just like it says,
an ordered pair [or a vector, or a point in the plane, . . .]. However,
{(1 � 2)} is a set with one element. That element is the point (1 � 2).

Example 4.7. The collection of all straight lines in the plane is a set
[sometimes denoted by the impressive-looking symbol, Gr(1 �R)]. Ev-
ery element of that set is a straight line in the plane, and every such
straight line is an element of that set.

20

Example 4.8. Very often, mathematicians and computer scientists build
sets with elements that are themselves sets. For instance, {{1}} is a
set with one element; namely, {1}. And {{1} � {1 � 2}} is a set with two
elements: {1} and {1 � 2}.

• By the empty set we mean the [unique] set that has no elements. The
empty set is often denoted by ?, sometimes also {}.

• Our definition of a set is naive in part because “collection” and “ob-
ject” are ill-defined terms. Our definition has some undesirable con-
sequences as well, as it allows some very nasty objects to be sets. For
example, we could define, using the preceding, A to be the collection of
all sets. Since every set is an “object,” whatever that means, A would it-
self have to be a set. In particular, A would have to have the extremely
unpleasant property that A is an element of itself! Bertrand Russel
(1902) tried to correct this deficiency, and discovered that all of naive
set theory and naive logic is [somewhat] irrational; see Example 4.14.

• One can build a set by looking at all objects � that have a certain prop-
erty Π. Such a set is written as {� : � has property Π}, or sometimes
[as is done in your textbook, for example], {�| � has property Π}. And
by B := {� ∈ A : � has property Π} we mean the obvious thing: “B is
defined as the set of all elements of A that have property Π.”

Example 4.9. N = {� ∈ Z : � ≥ 1}.

Example 4.10. Q = {� ∈ R : � = �/� for some �� � ∈ Z}.

Example 4.11. Complex numbers are, by definition, elements of the
following set:

C := {�| � = � + �� for some �� � ∈ R}�

where � :=
√

−1.

Example 4.12 (intervals). Suppose � and � are real numbers. If � ≤ �,
then we may define

[� � �] := {� ∈ R : � ≤ � ≤ �} �

This is called the closed interval from � to �. If, in addition, � < �,
then we may define

(� � �) := {� ∈ R : � < � < �} �
(� � �] := {� ∈ R : � < � ≤ �} �
[� � �) := {� ∈ R : � ≤ � < �} �

The first of these three is called the open interval from � to �; the
other two are half-open, half-closed intervals.

21

• Two sets A and B are said to be equal if they have exactly the same
elements. In that case, we may write A = B. In other words,

(A = B) ↔ ∀�
�
(� ∈ A) ↔ (� ∈ B)

�
�

The preceding is useful because frequently this is how one checks to
see whether or not A = B.

Example 4.13. Suppose � is a strictly-increasing function of a real
variable. Let �−1 denote the inverse function to � . Then

{� : � (�) ≤ 1} = (−∞ � �−1(1)]�

Here is the proof: Let A denote the left-hand side and B the right-hand
side. If � ∈ A then � (�) ≤ 1; because �−1 is increasing, � = �−1(� (�)) ≤
�−1(1) and hence � ∈ B. Conversely, if � ∈ B then � ≤ �−1(1). Since
� is increasing, � (�) ≤ � (�−1(1)) = 1 and hence � ∈ A. We have shown
that � ∈ A if and only if � ∈ B; therefore, A = B.

Example 4.14 (Russel’s Paradox). Here is an example that was con-
cocted by Bertrand Russel (1902) in order to show that naive set theory—
and propositional and/or predicate logic, for that matter—are flawed.2
Let � denote the collection of all sets � that are not elements of them-
selves. That is,

� := {� : � �∈ �}�
[Note that we really want “� �∈ �” and not “� �∈ {�},” the latter being a
tautology for any object �.] Russel’s set � is nonempty; for example,
{1} ∈ �. At the same time, the definition of � immediately ensures
the tautology,

(� ∈ �) ↔ (� �∈ �)�
Thus, we must conclude that our definition of a “set” is flawed.

4.2. The Calculus of Set Theory

• Let A and B be two sets. We say that B is a subset of A, and denote it
by “B ⊆ A,” if every element of B is an element of A. In other words,

B ⊆ A ↔ ∀�
�
� ∈ B → � ∈ A

�
�

• ? ⊆ A for every set A, since the following is a tautology:

� ∈ ? → � ∈ A�
2The remedy is twentieth-century axiomatic set theory and axiomatic logic. It turns out

that, as part of this remedy, one finds good news and also some bad news. The bad news is
that both axiomatic theories lie well beyond the scope of this course. The good news is that the
naive set theory and logic of this course are good enough for most elementary applications in
other areas of mathematics, science, and technology.

22

• A ⊆ A for every set A, by default [� ∈ A � � ∈ A].

• A = B if and only if both of the following propositions are true: A ⊆ B;
and B ⊆ A. In other words,

A = B ↔ [(A ⊆ B) ∧ (B ⊆ A)] �

• If A and B are two sets, then their intersection—denoted by A ∩ B—is
the set whose elements are all common elements of A and B. More
precisely,

A ∩ B := {� : (� ∈ A) ∧ (� ∈ B)}�

In other words, � ∈ A ∩ B if and only if � ∈ A and � ∈ B. For this
reason, some people refer to A∩B as A and B. The similarity between
the symbols “∩” and “∧” is by design and serves as a mnemonic.

• If A and B are two sets, then their union—denoted by A ∪ B—is the set
whose elements are all common elements of A and B. More precisely,

A ∪ B := {� : (� ∈ A) ∨ (� ∈ B)}�

In other words, � ∈ A ∪ B if and only if � ∈ A or � ∈ B. For this
reason, some people refer to A ∪ B as A or B. The similarity between
the symbols “∪” and “∨” is by design and serves as a mnemonic.

• If A and B are sets, then A \ B denotes the elements of A that are not
elements of B; that is,

A \ B := {� ∈ A : � �∈ B}�

The set A \ B is called A set minus B; it is also sometimes called the
complement of B in A.3

• In some contexts, we have a large [“universal”] set U and are inter-
ested in subsets of U only. In such a context, we write A�—read as
“A complement”—in place of U \ A. For instance, if we are studying
the real numbers, then U := R, and [� � �]� denotes (−∞ � �) ∪ (� � ∞)
whenever � ≤ � are two real numbers.4

• The collection of all subsets of a set A is a set; it is called the power
set of A and denoted by �(A). That is,

�(A) := {B : B ⊆ A}�
3Your textbook writes this as A − B. We will not do that in this course, because in most of

mathematics that notation is reserved for something else.
4Your textbook writes B̄ instead of B� . We will not do that in this course because B̄ means

something else in most of mathematics.

23

Example 4.15. The power set of {0 � 1} is

�({0 � 1}) =
�
? � {0} � {1} � {0 � 1}

�
�

Example 4.16. The set {? � 0 � 1 � {0 � 1}} is not the power set of any
set.

Example 4.17. The power set of {0 � 1 � 2} is

�({0 � 1 � 2}) =
�
? � {0} � {1} � {2} � {0 � 1} � {0 � 2} � {1 � 2} � {0 � 1 � 2}

�
�

• If A has many elements, then how can we be sure that we listed all of
its subsets correctly? The following gives us a quick and easy test.

Proposition 4.18. Choose and fix an integer � ≥ 0. If a set A has �
distinct elements, then �(A) has 2� distinct elements.

I will prove this fact in due time.

• If A and B are two sets, then A × B is their Cartesian product, and
is defined as the collection of all ordered pairs (� � �) such that � ∈ A
and � ∈ B; that is,5

A × B := {(� � �) : � ∈ A� � ∈ B}�

More generally, if A1� � � � � A� are � sets, then their Cartesian product
is the collection of all ordered �-tuples (�1 � � � � � ��) such that �� ∈ A�
for all 1 ≤ � ≤ �. That is,

A1 × · · · × A� := {(�1 � � � � � ��) : �� ∈ A� for all 1 ≤ � ≤ �} �

Example 4.19. Since [1 � 2] × [0 � 1] = {(� � �) : 1 ≤ � ≤ 2� 0 ≤ � ≤ 1},
we can think of this set geometrically as a planar square with vertices
at the points (1 � 0), (1 � 1), (2 � 0), and (2 � 1).

• Let A be a set and � a positive integer. We frequently write A� in place
of the Cartesian-product set A × · · · × A [� times].

Example 4.20. Choose and fix positive integers � and �. Then, R�

denotes the collection of all �-tuples of real numbers, and N� denotes
the collection of all �-tuples of positive integers. For another example
consider the set,

A := {o �˛}�

Then,
A2 =

�
(o �o) � (˛ �˛) � (o �˛) � (˛ �o)

�
�

5More precisely still, A × B = {(� � �) : (� ∈ A) ∧ (� ∈ B)}.

24

The following is a sophisticated [and useful] way to restate “multiplica-
tion tables” that we learn in second grade.

Proposition 4.21. If A has � distinct elements and B has � distinct
elements, then A × B has �� distinct elements.

Remark 4.22. I am making some fuss about the word “distinct” because
otherwise it is not clear what we mean when we say that “a set A has
� elements.” For example, the set A := {˝ �˝} should really only have
one element because {˝ �˝} is the same set as {˝}, even though visual
inspection might suggest that {˝ �˝} ought to have 2 elements.

We can draw a multiplication table in order to convince oneself of the
verasity of Proposition 4.21. But is it really true? The answer is, “yes.”

Proof. We proceed by applying induction. First consider the case that
� = 1, in which case we can write A = {�} for some �. If B is a set with
� elements, say B = {�1 � � � � � ��}, then A × B is the collection of all
pairs (� � ��) for � = 1� � � � � �. There are � such points. Therefore, A×
B has �� = � elements in this case. In other words, the proposition
is true when � = 1 [regardless of the numerical value of �].
Choose and fix a positive integer �, and let P(�) denote the proposition
that “A×B has �� elements for all integers � ≥ 1 and all sets A and B
with � and � elements respectively.” We just verified that P(1) is true.
It suffice to suppose that P(1)� � � � � P(�) are true [this is our induction
hypothesis], and prove conditionally that P(� + 1) is true.
If A has � + 1 elements, then we can write A = {�1� � � � � �� � ��+1}. If
B is any set of � elements, for any integer � ≥ 1, then we can also
write B := {�1 � � � � � ��}, in which case, A × B is the collection of all
pairs (�� � ��) for 1 ≤ � ≤ � + 1 and 1 ≤ � ≤ �. We can divide this
collection of pairs into two disjoint parts: Those with index 1 ≤ � ≤ �
and those with index � = � + 1. The induction hypothesis ensures that
there are ��-many such pairs that are of the first type; and there
are � such pairs of the second type. Therefore, altogether there are
�� + � = (� + 1)�-many such pairs. This completes the proof of the
induction step, whence also that of the proposition.

Corollary 4.23. Suppose A1� � � � � A� respectively have �1� � � � � �� dis-
tinct elements. Then, A1 × · · ·×A� has �1 × · · ·×�� distinct elements.
In particular, if A has � distinct elements then A� has �� distinct
elements for every positive integer �.

Proof. We will prove the first assertion; the second follows from the
first, after we specialize the latter to the case that A1 = · · · = A� = A
and �1 = · · · = �� = �.
Let P(�) denote the assertion that “if A1� � � � � A� are sets that respec-
tively have �1� � � � � ��-many distinct elements, then A1 × · · · × A� has

25

�1 × · · · ��-many distinct elements.” Proposition 4.21 ensures that P(2)
is true. Now suppose, as our induction hypothesis, that P(1)� � � � � P(�)
are true for some integer � ≥ 1. We plan to prove that P(� + 1) is
true; this and the method of mathematical induction together imply
that P(�) is true for all positive integers �. But

A1 × · · · × A�+1 = (A1 × · · · × A�)� �� �
:=A

×A�+1�

By the induction hypothesis, A has N := �1 × · · ·×��-many distinct ele-
ments. A second appeal to the induction hypothesis [using the validity
of P(2)] shows us then that A×A�+1 has N��+1-many distinct elements.
This completes the proof that P(�) is true for all � ≥ 1.

Let us close this section with the following.

Proof of Proposition 4.18. We first need to think of a good way to list all
of the subsets of a finite set A := {1 � � � � � �} with � elements, say. List the
elements of A, and then underneath your list assign a checkmark (X) or an
xmark (7) to every element. Every time you see an 7 the element is ignored;
elements that correspond to X are put into the subset. For example,

1 2 3 · · · � − 1 �
7 7 X · · · X 7

is a way to code the subset {3 � � � � � � − 1},

1 2 3 · · · � − 1 �
X 7 X · · · X X

is another way to write {1 � 3 � � � � � � − 1 � �}, and

1 2 3 · · · � − 1 �
7 7 7 · · · 7 7

[all with xmarks] designates the empty subset ?. Every distinct 7/Xcode cre-
ates a distinct subset of A. Conversely, every subset of A has an 7/Xassignment.
In summary, the total number of subsets of A is equal to the total number
of different ways we can create a list of � xmarks and checkmarks. The set
of all lists of � xmarks and checkmarks is simply {7 �X}�. Corollary 4.23
tells us that there are 2�-many such lists.

Example 4.24. This is a natural time to stop and re-examine the preceding
proof by considering an example. Suppose A = {1 � 2 � 3} is a set with 3
elements. There are 23 = 8 subsets of A which we can write, together with
their 7/X code as follows:

26

Subset Code
? {7� 7� 7}
{1} {X� 7� 7}
{2} {7�X� 7}
{3} {7� 7�X}
{1 � 2} {X�X� 7}
{1 � 3} {X� 7�X}
{2 � 3} {7�X�X}
{1 � 2 � 3} {X�X�X}

4.3. Set Identities

The calculus of sets implies countless relations between sets, just as the
calculus of functions does for functions. The latter topic fills a year of
freshman “calculus.” Here are some examples of the former. Throughout
this discussion, A, B, C, . . . denote a collection of sets. Whenever we write
U , then we imply that U is a universal set.

1. A ∩ B = B ∩ A.

Proof. The only way to prove this, and the following assertions, is to
follow the definition of equality for sets carefully. For this reason, I
will prove this first assertion only. You should check a few more in
order to ensure that you understand this method.
According to the definition of equality for sets, we need to prove two
thing: (1) If � ∈ A∩B then � ∈ B∩A; and (2) If � ∈ B∩A then � ∈ A∩B.
Now that we understand that we have to prove both (1) and (2), the
rest is pedantic: If � ∈ A ∩ B, then � is both in A and B. Equivalently,
� is both in B and A. Hence, � ∈ B ∩ A. Conversely, if � ∈ B ∩ A, then
� is both in A and B, whence � ∈ A ∩ B.

2. A ∪ ? = A.

3. A ∩ ? = ?.

4. A ∪ (B ∪ C) = (A ∪ B) ∪ C. Therefore, we may—and often will—omit the
parentheses.

5. A ∩ (B ∩ C) = (A ∩ B) ∩ C. Therefore, we may—and often will—omit the
parentheses.

6. A∩ (B∪C) = (A∩B)∪ (A∩C). Therefore, we may—and often will—omit
the parentheses.

7. A∪ (B∩C) = (A∪B)∩ (A∪C). Therefore, we may—and often will—omit
the parentheses.

8. A = (A�)� [when A is a subset of a universal set U].

27

9. A ∪ A� = U [when A is a subset of a universal set U].

10. A ∩ A� = ? [when A is a subset of a universal set U].

11. (A ∪ B)� = A� ∩ B� [when A and B are subsets of a universal set U].
Therefore, we may not omit the parentheses.

12. (A ∩ B)� = A� ∪ B� [when A and B are subsets of a universal set U].
Therefore, we may not omit the parentheses.

13. (A ∪ B ∪ C)� = A� ∩ B� ∩ B� [when A� B� C are subsets of a universal set
U]. Therefore, we may not omit the parentheses.

14. (A ∩ B ∩ C)� = A� ∪ B� ∪ B� [when A� B� C are subsets of a universal set
U]. Therefore, we may not omit the parentheses.

15. Etc.

Definition 4.25. We often write ∪�
�=1A� in place of A1 ∪ · · · ∪ A� , and ∩�

�=1A�
in place of A1 ∩ · · · ∩ A� , whenever A1� � � � � A� are sets. More generally, if
A1� A2� � � � are sets, then ∪∞

�=1A� := A1 ∪ A2 ∪ · · · denotes the set of all points
that are in at least one of the A� ’s, and ∩�

�=1A� := A1 ∩ A2 ∩ · · · denotes the
set of all points that are in every A�. More generally still, if A� is a set for
all � in some index set I , then ∪�∈IA� denotes the set of all points that are in
at least one A� and ∩�∈IA� denotes the set of all points that are in every A�.

Example 4.26. If � is a positive integer, then

�−1�

�=1
[� � � + 1] = [1 � �]�

��

�=1
[� � �] = {�}� and

��

�=1
[� � � + 1] = ?�

Example 4.27. R = ∪∞
�=−∞[−� � −� + 1]. Moreover,

{1} =
∞�

�=1

�
1 � 1 + �−1�

and ? =
∞�

�=1

�
1 � 1 + �−1�

�

whereas

[1 � 2) =
∞�

�=1

�
1 � 1 + �−1�

and (1 � 2) =
∞�

�=1

�
1 � 1 + �−1�

�

Example 4.28. Here is a final example to work on:
∞�

�=1

�
1 � 1 + �−1�� = (−∞ � 1) ∪ [2 � ∞)�

28

5
Transformations

5.1. Functions

• Let A and B denote two sets. A function � from A to B assigns to every
element � ∈ A one element � (�) ∈ B. In this case, we sometimes say
that � maps A into B, or sometimes even � maps A to B.

• Functions are also known as mappings or transformations.
Example 5.1. Sometimes it is more convenient to write “formulas,”
as one does in school Calculus. For instance, � (�) := �2 for � ∈ R

describes a mapping that yields the value �2 upon input � ∈ R. Note
that “there is no �” in this formula; just the mapping � → �2. But
you should not identify functions with such formulas because that can
lead to non sense. Rather, you should think of a function � as an
algorithm: “� accepts as input a point � ∈ A, and returns a point � (�) ∈
B.” For example, the following describes a function � from the set
A := {cow � dog} to the set B := {! �h �Í}:

� (cow) :=h� � (dog) :=!�

Question. Does it matter that the displayed description of � does not
make a reference to the computer-mouse symbol Í which is one of
the elements of the set B?
Example 5.2. All assignments tables are in fact functions. And we do
not always label functions as � , � , etc. For instance, consider the first
truth table that we saw in this course:

� ¬�
T F
F T

This table in fact describes a function—which we denoted by “¬”—from
the set of all possible truth assignments for � to the corresponding
truth assignments for ¬�. Namely, ¬(T) := F; and ¬(F) := T.

• The preceding remark motivates the notation “� : A → B” which is
short hand for “let � be a function from A to B.” We use this notation
from now on.

29

• In discrete mathematics, one often considers functions � : A → B
where A and B are a finite collection of objects. The preceding 2 ex-
amples are of course of this type. One can think about such functions
not so much via formulas such as “� (�) = �2,” rather as mappings from
A to B and draw a representing picture such as the one in Figure 1.

cow h

dog !

Figure 1: A graphical representation of the function in Example 5.1

• One can imagine all sorts of functions in this way. For example, con-
sider 2 abstract sets A := {�1 � � � � � �3} and B := {�1 � �2}, together
with the function � : A → B that is defined as � (�1) = � (�3) = �2 and
� (�2) = �1� We can think of this function, pictorially, as is shown in
Figure 2

�1

�1

�2

�2

�3

Figure 2: A graphical representation of the function in Example 5.1

• A function � is said to be real valued when it maps some set A to
a subset of R [possibly R itself]. Most functions that one sees in a
standard calculus course are real-valued functions.

Example 5.3. We can use the relation � (�) := �2 to define a real-valued
function from [0 � 1] to R. We can use it also to define a [real-valued]
function from R to [0 � ∞), as well a [real-valued] function from N to
[0 � ∞). However, � (�) = �2 does not define a function from any subset
of R to (−∞ � 0).

30

Example 5.4 (Floor and Ceiling Functions). Two functions of import
in discrete mathematics are the floor and the ceiling. The floor of any
real number �—denoted by ���—is the largest integer that is ≤ �. The
ceiling of �—denoted by ��� is the smallest integer ≥ �. For instance,

�1�5� = �1�99� = 1� and �1�5� = �1�99� = 2�
Similarly,

�−1�5� = �−1�99� = −2� and �−1�5� = �−1�99� = −1�
etc.
Example 5.5 (The Factorial Function). The factorial function is the
function � : Z+ := {0 � 1 � 2 � � � �} → Z+, defined as � (�) := �!, where

0! := 1�
and

∀� ≥ 1 : �! := � × (� − 1)!�
Therefore, 1! = 1, 2! = 2×1 = 2, 3! = 3×2×1 = 6, 4! = 4×3×2×1 = 24,
etc. It is often better to write �! than to evaluate it numerically, in part
because �! is a huge number even when � is modestly large. For
instance,

10! ≈ 3�6 × 106; 15! ≈ 1�3 × 1012; and 20! ≈ 2�4 × 1018�

Abraham de Moivre (1728) proved that there exists a number B ≈ 2�5
such that �!(�/e)−��−1/2 → B as � → ∞. A few years later (1730),
James Stirling proved that B =

√
2π. In other words, the formula of

de Moivre, and later Stirling, tells us that
�! ≈

√
2π��+(1/2)e−� for � large�

This approximation is nowadays called Sitrling’s formula, though the
ascription is admittedly inaccurate. Stirling’s formula yield good results
even when � is modestly large. For instance, it yields 10! ≈ 3� 598� 700,
when in fact 10! = 3� 628� 800.

5.2. The Graph of a Function

• The graph of a function � : A → B is the set
{(� � � (�)) : � ∈ A} = {(� � �) : [� ∈ A] ∨ [� = � (�)]}�

Example 5.6. You have encountered graphs of functions many times al-
ready in this and your other mathematics courses. For instance, in Figure
3 you can see a plot of the graph

� (�) := �3�
that maps A := [−1 � 1] to B := [−5 � 8] (say). Of course, we could also think
of this function � as a map from A := [−1 � 1] to B := [−1 � 1], etc.

31

�

� (�) = �3

1-1

-1

1

0

Figure 3: The function � (�) = �3 plotted over the region −1 ≤ � ≤ 1

Example 5.7. Consider the function � that is defined, on the domain

A := {−2 � −1�5 � −1 � 0 � 1 � 2}�

as follows:
� � (�)
-2 0.5

-1.5 1.5
-1 -1.5
0 2
1 1
2 0

We can think of � as a function from A to

B := [−2 � 2]�

say, or a function from A to

B := {−1�5 � 0 � 0�5 � 1 � 1�5 � 2}�

etc. The graph of the function � is plotted in Figure 4. Note that the graph
is “discrete”; that is, it constitutes a finite collection of singletons. In this
sense, the graph of the function of this example appears to be different
from the graph of a function such as � (�) = �3 in the previous example.
Note, however, that the graph of � (�) = �3 is also a collection of singletons;
it is just not a finite collection.

32

�

�

1 2-1-2

-1

-2

1

2

0

Figure 4: A discrete function (Example 5.7)

Example 5.8. In Figure 5 you can find a plot of the floor function � (�) = ���
from A := [−3 � 3] to B := [3 � 3] (say). Can you plot the ceiling function
�(�) = ��� from A := [−3 � 3] to B := [−3 � 3]?

�

� (�) = ���

1 2 3-1-2-3

-1

-2

-3

1

2

3

0

Figure 5: The floor function

33

5.3. One-to-One Functions

• Consider a function � : A → B from a set A to a set B. If S ⊆ A is a
subset of A, then the image of S under � is the set

� (S) := {� (�) : � ∈ S}�

I emphasize the fact that � (S) ⊆ B.
Example 5.9. Consider the function � : {�1 � �2 � �3} → {�1 � �2 � �3},
depicted in the following graphical representation:

�1

�1

�2 �2

�3

�3

Figure 6: A function on three points.

Then, � ({�2 � �3}) = {�2} and � ({�1}) = {�1}.
Example 5.10. Consider the function � : [0 � 2π] → R that is defined
by � (�) := sin(�) for all � ∈ [0 � 1]. Then, � ([0 � π/2]) = � ([0 � π]) = [0 � 1],
� ([π � 2π]) = [−π � 0], and � ([0 � 2π]) = [−1 � 1].
Example 5.11. If � is a real number, then there is a unique largest
integer that is to the left of �; that integer is usuall denoted by ���, and
function � := �•� is usually called the floor, or the greatest integer,
function. It is a good exercise to check that, if � denotes the floor
function, then � [1/2 � 2] = {0 � 1 � 2}.

• Let � : A → B denote a function from a set A to a set B. We say that �
is one-to-one [or 1-1, or injective] if

∀�� � ∈ A : [� (�) = � (�)] → [� = �]�

• Easy exercise: � : A → B is 1-1 if and only if

∀�� � ∈ A : [� (�) = � (�)] ↔ [� = �]�

Proposition 5.12. Consider a function � : A → B, where A ⊆ R and
B ⊆ R, and suppose that � is strictly increasing; that is,

∀�� � ∈ A : [� < �] → [� (�) < � (�)]�

Then � is one-to-one.

34

Proof. It suffices to prove that

∀�� � ∈ A : [� �= �] → [� (�) �= � (�)]�

Suppose �� � ∈ A are not equal. Then either � < � or � < �. In the
first case, � (�) < � (�) and in the second case, � (�) < � (�). In either
case, we find that � (�) �= � (�).

Example 5.13. Define a function � : [0 � 1] → R via � (�) := �2. Then �
is one-to-one.

Example 5.14. Define a function � : [π/2 � 3π/2] → R via � (�) := sin(�).
Then � is one-to-one.

In order to show that a function is not 1-1, we need to construct, using
whatever means we have, two points �� � such that � �= � and yet
� (�) = � (�). Depending on the function, this process can, or cannot, be
very easy. Here are two very easy examples.

Example 5.15. Define a function � : [−1 � 1] → R via � (�) := �2. Then
� is not one-to-one.

Example 5.16. Define a function � : [π/2 � 2π] → R via � (�) := sin(�).
Then � is not one-to-one.

Example 5.17. The function depicted in Figure 1 is 1-1, whereas the
ones in Figures 2 and 6 are not.

5.4. Onto Functions

• A function � : A → B is said to be onto [or surjective] if

∀� ∈ B ∃� ∈ A : � (�) = ��

In other words, � is onto if and only if � (A) = B.

• In order to prove that a certain function � : A → B is not onto we
need to find, using whatever means we have, a point � ∈ B such that
� �= � (�) for any � ∈ A.

Example 5.18. The functions depicted in Figures 1 and 2 are onto,
whereas the one in Figure 6 is not.

Example 5.19. Being onto can have to do with our choice of the range
set B, and there in fact can be different choices for B. As an exam-
ple consider the function � in Figure 4, and define three sets, A :=
{−2 � −1�5 � −1 � 0 � 1 � 2}, B1 := [−2 � 2], and B2 := {−1�5 � 0 � 0�5 � 1 � 1�5 � 2}.
We can view � either as a function from A to B1, or as a function from
A to B2. In the former case, � is one-to-one but not onto. In the latter
case, � is one-to-one, and onto.

35

Example 5.20. Define a function � : [0 � 1] → [0 � 1] via � (�) := �2. Then
� is onto. So is the function � : [−1 � 1] → [0 � 1], defined via � (�) := �2.
See Figure 7. On the other hand, the function � : [0 � 1] → [−1 � 1],
defined via � (�) := �2, is not onto.

�

� (�) = �2

1-1

1

0

Figure 7: The function � (�) = �2 plotted over the region −1 ≤ � ≤ 1

5.5. Inverse Functions

• If � : A → B is both 1-1 and onto, then we say that � is invertible.

• The definitions of one-to-one and onto functions together teach us that
if � is invertible, then to every point � ∈ B we can associate a unique
point � ∈ A such that � (�) = �. We define �−1(�) := � in this case. Then,
�−1 : B → A is a function, and referred to as the inverse function to �
[or the inverse of �].
Example 5.21. The function � that was depicted in Figure 1 is both
1-1 and onto. Therefore, it has an inverse �−1. One can explicitly write
that inverse as follows: �−1(!) = dog and �−1(h) = cow� This function
can be depicted pictorially as in Figure 8 below.

cow h

dog !

Figure 8: The inverse of the function in Example 5.1

Example 5.22. The functions in Figures 2 and 6 are not invertible.

36

5.6. Composition of Functions

• Choose and fix three sets, A, B, and C. If we have a function � : A → B
and a function � : B → C, then we can compose them in order to
obtain a new function � ◦ � : A → C as follows:

∀� ∈ A : (� ◦ �)(�) := �(� (�))�

The function � ◦ � is called the composition of � with � .

A

�

�

B

�
� = � (�)

C

� = �(�)

� ◦ �

Figure 9: The composition � ◦ � of � : B → C with � : A → B

Figure 9 depicts graphically how the point � ∈ A gets mapped to � =
� (�) ∈ B by the function � , and in turn to the point � = �(�) = �(� (�)) =
(� ◦�)(�) ∈ C by the function � . We can think of the resulting mapping
� ◦ � directly as a function that maps � ∈ A to � = (� ◦ �)(�) ∈ C.
Example 5.23. Suppose � (�) := �2 for every positive integer �, and
�(�) := 1 + � for every positive integer �. Then, in this example,
A = B = C = N, and (� ◦ �)(�) = 1 + �2 for every positive integer
�. Because here we have A = B = C, we could also consider the
composed function (� ◦ �)(�) = (1 + �)2 for every positive integer �.

• The following follows immediately from the definitions by merely re-
versing the arrows in Figure 9. Can you turn this “arrow reversal”
into a rigorous proof?.
Proposition 5.24. Suppose � : A → B and � : B → C are as above.
Suppose, in addition, that � and � are invertible. Then, � ◦ � : A → C
is invertible and

∀� ∈ C : (� ◦ �)−1(�) = �−1 �
�−1(�)

�
=

�
�−1 ◦ �−1�

(�)�

37

5.7. Back to Set Theory: Cardinality

• For every integer � ≥ 1, the cardinality of {1 � � � � � �} is defined as
|{1 � � � � � �}| := �.

• We say that A and B have the same cardinality if and only if there
exists a 1-1 onto function � : A → B. In this case, we write |A| = |B|.

Lemma 5.25. If A has � elements, where � ≥ 1 is an integer, then
|A| = �.

Proof. We can write A as {�1 � � � � � ��} for some distinct �1� � � � � ��.
The function � (�) := �� [� = 1� � � � � �] is 1-1 onto from {1 � � � � � �} to A.
Therefore, |A| = |{1 � � � � � �}| = ��

• The cardinality of N is defined as |N| := ℵ0 [read as “aleph-naught,”
after the Hebrew letter “aleph,” which is written as ℵ].

• We say that a set A is countable if |A| = ℵ0. We say that A is denu-
merable when A is either countable or finite. If A is not countable nor
finite, then we say that A is uncountable.

Proposition 5.26. The set of all even integers, the set of all odd
integers, and the collection Z of all integers are all countable sets.

Proof. Let E denote the set of all even integers. Define � (�) := �/2 for
all � ∈ E; thus, for example, � (2) = 1, � (4) = 2, � (6) = 3, etc. You should
check that � : E → N is 1-1 onto (induction). It follows that |E| = ℵ0.
Similarly, let O denote the set of all odd integers. Define �(�) :=
(� + 1)/2 for all � ∈ O; thus, for example, �(1) = 1, �(3) = 2, �(5) = 3,
etc. You should check that � : O → N is 1-1 onto (induction). It follows
that |O| = ℵ0.
Now let us prove that |Z| = ℵ0. Define a function � on Z as follows:
For all integers �,

� (�) :=
�

2� if � ≥ 0�
−2� − 1 if � < 0�

Thus, for example, � (0) = 2, � (1) = 4, � (2) = 6� . . . and � (−1) = 1,
� (−2) = 3, � (−3) = 5, You should check that � is 1-1 onto from Z

to N [it maps nonnegative elements of Z to E and negative elements
of Z to O]. This proves that |Z| = |N| = ℵ0.

There are obvious, or at least nearly-obvious, variations on the pre-
ceding which one can work out as basic exercises. For instance, you
should check that the set {2 � 3 � � � �} of integers ≥ 2 is countable. And
so is {· · · � −7 � −6 � −5}, the set of integers ≤ −5. The following novel
departure from the obvious should not be missed.

38

Theorem 5.27 (Cantor). If A is a bounded open interval, then |A| =
|R|.

Proof. We can write A := (� � �), where � < � are real numbers. Define

� (�) := � − �
� − � for � < � < ��

Because � : (� � �) → (0 � 1) is 1-1 onto, it follows that |(� � �)| = |(0 � 1)|.
In particular, |(� � �)| does not depend on the numerical value of � < �;
therefore, we may—and will—assume without loss of generality that
� = −π/2 and � = π/2. Now consider the function

�(�) := tan(�) for −π
2 < � < π

2 �

Because � : (−π/2 � π/2) → R is 1-1 onto, it follows that |(−π/2 � π/2)| =
|R|, which concludes the proof.

• Suppose there exists a one-to-one function � : A → B. Then we say that
the cardinality of B is greater than that of A, and write it as |A| ≤ |B|.
The following might seem obvious, but is not when we pay close at-
tention to the definitions [as we should!!].

Theorem 5.28 (Cantor, Schröder, and Bernstein). If |A| ≤ |B| and
|B| ≤ |A| then |A| = |B|.

The proof is elementary but a little involved. You can find all of the
details on pp. 103–105 of the lovely book, Sets: Naı̈ve, Axiomatic, and
Applied by D. van Dalen, H. C. Doets, and H. de Swart [Pergamon
Press, Oxford, 1978], though this book refers to Theorem 5.28 as the
“Cantor–Bernstein theorem,” as is also sometimes done.
Instead of proving Theorem 5.28, let us use it in a few examples.

Example 5.29. Let us prove that |(0 � 1)| = |(0 � 1]|. Because

(0 � 1) ⊆ (0 � 1] ⊆ R�

Theorem 5.27 shows that |(0 � 1)| ≤ |(0 � 1]| ≤ |R| = |(0 � 1)|� Now appeal
to Theorem 5.28 in order to conclude that |(0 � 1)| = |(0 � 1]|.

The following is another novel departure from the obvious.

Theorem 5.30 (Cantor). Q is countable.

Proof. Because Z is countable, it suffices to find a 1-1 onto function � :
Z → Q. In other words, we plan to list the elements of Q as a sequence
· · · � �−3� �−2� �−1� �0� �1� �2� �3� � � � that is indexed by all integers.

39

1/1 1/2 1/3 1/4 1/5 · · ·

2/1 2/2 2/3 2/4 2/5 · · ·

3/1 3/2 3/3 3/4 3/5 · · ·

4/1 4/2 4/3 4/4 4/5 · · ·

...
...

...
...

... . . .

Figure 10: A way to list all strictly-positive elements of Q

1/1 1/2 1/3 1/4

2/1 2/1 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3 4/4

Figure 11: Navigation through strictly-positive elements of Q

We start by writing all strictly-positive rationals as in Figure 10.
Then we decorate that figure by adding a series of arrows as in Figure
11.
Now we define a function � by “following the arrows,” except every
time we encounter a value that we have seen before, we suppress the
value and proceed to the next arrow:

� (1) := 1/1 → � (2) := 1/2 → � (3) := 2/1 → � (4) := 3/1

→ � (5) := 3/2 → [3/3 suppressed] → � (6) := 2/3 → � (7) := 1/3

→ � (8) := 1/4 → [2/4 suppressed] → � (9) := 3/4 → [4/4 suppressed]
→ � (10) := 4/3 → [4/2 suppressed] → � (11) := 4/1 → etc.

Also, define � (0) := 0 and � (�) := −� (−�) for all strictly-negative in-
tegers �. Then � : Z → Q is 1-1 onto, whence |Z| = |Q|. Since Z
is countable, the existence of such a function � proves that Q is also
countable.

And here is an even more dramatic departure from the obvious:

40

Theorem 5.31 (Cantor). R is uncountable.

Proof. Thanks to Theorem 5.27, Theorem 5.31 is equivalent to the
assertion that (0 � 1)—or (eπ2 � π3) for that matter—is uncountable. I will
prove that (0 � 1) is uncountable. Te proof hinges on a small preamble
from classical number theory.
Every number � ∈ (0 � 1) has a decimal representation,

� = 0��1�2 · · · = �1
10 + �2

100 + �3
1000 + · · · =

∞�

�=1

��
10� �

where �1� �2� � � � ∈ {0 � � � � � 9} are the respective digits in the decimal
expansion of �. Note, for example, that we can write 1/2 either as 0�5 or
as 0�49̄. That is, we can write, for � = 1/2, either �1 = 5, �2 = �3 = · · · =
0, or �1 = 4, and �2 = �3 = · · · = 9. This example shows that the choice
of �1� �2� � � � is not always unique. From now on, we compute the �� ’s
such that whenever we have a choice of an infinite decimal expansion
that ends in all 9’s from some point on or an expansion that terminates
in 0’s from some point on, then we opt for the 0’s case. In this way we
can see that the �� ’s are defined uniquely; that is, if �� � ∈ (0 � 1), then
�� = �� for all � ≥ 1; and conversely, if �� = �� for all � ≥ 1 then � = �.
The preceding shows that (0 � 1) is in 1-1, onto correspondence with
the collection � of all infinite sequences of the form (�1� �2� � � �) where
�� ∈ {0 � · · · � 9} for all � ≥ 1� In particular, it suffices to prove that � is
not countable.
Suppose, to the contrary, that � is countable. If this were so, then
we could enumerate its elements as �1� �2� � � �; that is, � = {�1� �2� � � � },
where the �� ’s are distinct and

�1 = (�1�1� �1�2� �1�3� � � �)�
�2 = (�2�1� �2�2� �2�3� � � �)�
�3 = (�3�1� �3�2� �3�3� � � �)� � � �

and ���� ∈ {0 � � � � � 9} for all �� � ≥ 1. In order to derive a contradiction
we will prove that there exists an infinite sequence � := (�1 � �2 � � � �)
such that � �∈ �, and yet �� ∈ {0 � � � � � 9} for all � ≥ 1. This yields
a contradiction since we know already that � is the collection of all
sequences of the form �1� �2� � � � where �� ∈ {0 � � � � � 9}. In particular,
it will follow that � cannot be enumerated.
To construct the point �, we consider the “diagonal subsequence,”
�1�1� �2�2� �3�3� � � � and define, for all � ≥ 1,

�� :=
�

0 if ���� �= 0�
1 if ���� = 0�

41

Then the sequence (�1 � �2 � � � �) is different from the sequence �� , for
every � ≥ 1, since �� and ���� are different. In particular, � �∈ �.

• The preceding argument is called “Cantor’s diagonalization argument.”

• One can learn a good deal from studying very carefully the proof of
Theorem 5.31. For instance, let us proceed as we did there, but expand
every � ∈ (0 � 1) in “base two,” rather than in “base ten.” In other words,
we can associate to every � ∈ (0 � 1) a sequence �1� �2� � � � of digits in
{0 � 1} such that

� = 0��1�2 · · · =
∞�

�=1

��
2� �

In order to make the choice of the �� ’s unique, we always opt for a
sequence that terminates in 0’s rather than 1’s, if that ever happens.
[Think this through.] This expansion shows the existence of a 1-1 and
onto function � : (0 � 1) → �, where � is the collection of all infinite
sequences of 0’s and 1’s. In other words, |(0 � 1)| = |�|, and hence
|�| = |R|, thanks to Theorem 5.27. Now let us consider the following
function � : � → �(Z+), where I recall �(· · ·) denotes the power set
of whatever is in the parentheses: For every sequence (�1� �2� � � �) ∈ �
of 0’s and 1’s, �(�1 � �2 � � � �) := ∪{�}, where the union is taken over all
nonnegative integers � such that �1 = 1. For instance,

�(0 � 0 � � � �) = ?�
�(1 � 0 � 0 � � � �) = {0}�

�(0 � 1 � 0 � 0 � � � �) = {1}�
�(1 � 1 � 0 � 0 � 0 � � � �) = {0 � 1}�

�(1 � 1 � 1 � � � �) = Z+� � � � �

A little work implies that � : � → �(Z+) is 1-1 and onto, and hence
|�| = |�(Z+)|, which we saw earlier is equal to |R|. We have shown
most of the proof of the following theorem [the rest can be patched
up with a little work].

Theorem 5.32. |R| = |�(Z+)|.

• The preceding has yet another interesting consequence which you
should be aware of. Consider an infinite “binary tree” with one “root.”
That is, we have a “vertex” [called root] that is connected to 2 vertices,
each of which is “connected” to two vertices, etc. Have a look at Figure
12 for the first four stages in the construction of our binary tree. On
all vertices, except at the root, we put a 0 if that vertex is a “left-child”
of its “parent”; otherwise, the vertex receives a 1. The resulting tree
is an example of a “decorated binary tree,” and the collection of all
infinite “ray” that begin with the root and traverse down the tree can

42

then be identified [via a 1-1, onto function] with the corresponding
sequence of 0’s and 1’s encountered as we move down the ray. The
preceding discussion shows that the cardinality of the set of rays of
our binary tree is |R|. [This discussion is a little informal since I have
not carefully defined the objects in quotations. But that can be done,
with a little effort.]

43

R
oo

t

0

0

0

0
1

1

0
1

1

0

0
1

1

0
1

1

0

0

0
1

1

0
1

1

0

0
1

1

0
1

Fi
gu

re
12

:T
he

fir
st

4
st

ag
es

of
th

e
co

ns
tr

uc
tio

n
of

a
de

co
ra

te
d

bi
na

ry
tr

ee

44

6
Patterns and Sequences

For a very long time, humans have been fascinated by “patterns” in se-
quences of numbers. This is likely linked to the very basis of our cognitive
system, brain structure, etc., and manifests itself also in the early stages of
our mathematical education. For instance, most of us have been asked by
our school teachers a question such as, “Find the next number in the follow-
ing sequence: 1� 3� 5� 7.” Which, most of us would have promptly answered,
“9.” Though in fact an equally correct answer would have been, “−eπ/

√
2. ”

A likely explanation of why most people would answer 9 and not −eπ/
√

2

is that our brains naturally look for patterns in sequences, even when there
really is no evidence for the existence of a pattern. In this chapter we
explore some natural ways that we can encounter patterns in mathematics
when there are indeed patterns to be found.

6.1. Recurrence Relations

• We can think of a sequence �1� �2� � � � of [say] real numbers as a func-
tion �(�) := �� [� ≥ 1].

• By a recurrence relation, for a sequence �1� �2� � � �, we mean a pattern
in the sequence that relates ��+1 to �1� � � � � ��.

Example 6.1. Consider the recurrence relation, ��+1 = �� + 1, valid
for all � ≥ 1. Then, if know the numerical value of �1, we ought to be
able to compute all of the �’s. In fact, we can make the following

Claim. ��+1 = �1 + �, for all integers � ≥ 1.

Therefore, if �1 = 1, then �� = � for all integers � ≥ 1.

Proof of Claim. We proceed by induction. Let P(�) denote
the statement, “��+1 = �1+�.” The recurrence relation of our
sequence ensures that P(1) is true. Suppose P(1) ∧ · · · ∧ P(�)
is true for some � ≥ 1. It remains to prove that P(� + 1) is
true, as well. But

��+2 = ��+1 + 1 = �� + � + 1�

45

The first equality holds by the recurrence relation, and the
second holds thanks to the induction hypothesis. This com-
pletes the proof of the claim.

Example 6.2. Consider the recurrence relation, ��+1/�� = 2. Then,
�2 = 2�1, �3 = 2�2 = 4�1, �4 = 2�3 = 8�1� In general, we may
guess that �� = 2�−1�1 for every integer � ≥ 1. Can you prove this
guess?

Example 6.3 (The tower of Hanoi). The Tower of Hanoi is a mathe-
matical puzzle which can be distilled to the following question: Suppose
�1 = 0 and ��+1 = 2�� + 1 for all � ≥ 1. Then can we evaluate �� for
every � ≥ 1?
You can read a part of the background story in the Wiki,

en.wikipedia.org/wiki/Tower_of_Hanoi

We can see that

�2 = 2�1 + 1 = 1�
�3 = 2�2 + 1 = 3�
�4 = 2�3 + 1 = 7�

...

From this we should be able to guess that

∀� ≥ 2 : �� = 2�−1 − 1�

Can you prove this guess?

Example 6.4. Here is another interesting recurrence relation that can
be resolved explicitly: ��+2 − ��+1 = ��+1 − �� for all � ≥ 1. That is
the sequence �1� �2� � � � has constant increments. Now suppose that we
know �1 and �2. Then we can solve for the rest of the sequence. For
example,

�3 = (�3 − �2) + (�2 − �1) + �1 = 2(�2 − �1) + �1�
�4 = (�4 − �3) + (�3 − �2) + (�2 − �1) + �1 = 3(�2 − �1) + �1�

...

We can guess that

∀� ≥ 3 : �� = (� − 1)(�2 − �1) + �1�

Can you prove it?

46

Example 6.5 (The Fibonacci Numbers). The famous Fibonacci se-
quence is defined as follows: Set �1 = 0, �2 = 1, and then consider the
[Fibonacci] recurrence relation:

∀� ≥ 1 : ��+2 = �� + ��+1�

Thus, for example,

�3 = �1 + �2 = 1�
�4 = �2 + �3 = 2�
�5 = �3 + �4 = 3�
�6 = �4 + �5 = 5�
�7 = �5 + �6 = 8�

...

In his influential book Liber Abaci (1202), Fibonacci [whose given
name was Leonardo Bonacci] described a method that computes ex-
plicitly �� for every integer � ≥ 3. In fact, Fibonacci discovered the
following elegant formula:

�� = 1√
5

�
��−1 − (1 − �)�−1�

; (6.1)

where � is the socalled “Golden Ratio,”

� = 1 +
√

5
2 ;

so that 1−� = 1
2 (1−

√
5), in particular. There is a lot of nonsense, includ-

ing too many well-publicized books, that is written about the “magic”
of the number �. Please read that sort of silliness with a grain of
salt. Still, Fibonacci’s numerical calculation (6.1) seems deeper—and
suggests a higher degree of complexity—than the calculations that we
have encountered so far.

6.2. Infinite Series

Our examples, thus far, began with a few initial pieces of a sequence to-
gether with a recurrence relation. We then used this information in order
to compute the sequence. Sometimes, it is also natural to reverse this pro-
cess. Specifically, we sometimes know the entire sequence and wish to know
about a certain property of the sequence. A classical example dates that back
to antiquity is the summation formula for the geometric series. That is, a
series of the form �� �2� �3� � � � � ��.

47

Proposition 6.6. For every real number � �= 1 and every integer � ≥ 0,

� + �2 + · · · + �� =
��

�=1
�� = ��+1 − �

� − 1 �

Equivalently, 1 + � + · · · + �� =
��

�=0 �� = ��+1−1
�−1 �

If, for example, |�| < 1, then we obtain ��+1 → 0 as � → ∞. In this way
we can deduce the following formula of Archimedes (in Greek: Aρχıµηδηζ;
c. 287 BC–c. 212 BC), which you might have seen in your calculus course:
∀� ∈ (1 � 1) : 1 + � + �2 + · · · =

�∞
�=0 �� = 1

1−� � The case � = 1/2 is a precise
formulation of the paradox of Achilles and the tortoise of the ancients [which
no longer poses a paradox].

Proof of Proposition 6.6. It suffices to prove the first assertion because the
second assertion follows from the first and the following tautology:

��
�=0 �� =

1 +
��

�=1 �� �
Let us write S� :=

��
�=1 �� for every � ≥ 1. We proceed by finding two

recurrence relations for the S� ’s. The first is

S�+1 − S� =
�
� + �2 + · · · + �� + ��+1�

−
�
� + �2 + · · · + ���

= ��+1�

valid for all � ≥ 1. The second is

S�+1 =
�
� + �2 + · · · + ��+1�

= � (1 + � + · · · + ��) = �(1 + S�)�

valid for all � ≥ 1, as well. Now we plug in the result of the second recur-
rence relation into the first. I will do this backwards in order to make clear
what is going on:

��+1 = S�+1 − S� = �(1 + S�) − S� = � + S�(� − 1)�

for all � ≥ 1. Since � �= 1, we can solve by subtracting from both sides �
and then dividing both sides by � − 1.

Your calculus course contains diverse examples of other infinite series
that arise in this sort of manner. For instance, you should know from your
calculus course that for all real numbers �,

e� = 1 + � + �2

2 + �3

6 + · · · =
∞�

�=0

��

�! �

where 0! := 1. Or, for that matter,

sin(�) = � − �3

6 + �5

120 − �7

720 + · · · =
∞�

�=0

(−1)�
(2� + 1)! �2�+1�

48

Remarkably, this last formula, and a host of formulas like it, were known to
Madhava of Sangamagrama (c. 1350–c. 1425), centuries before the calculus
of functions was studied systematically by James Gregory (1638–1675), Isaac
Barrow (1630–1677) , Isaac Newton (Barrow’s student; 1642–1726/1727), Got-
tfried Leibniz (1646–1716), Brook Taylor (of Taylor’s expansion; 1685–1731),
etc.

6.3. Continued Fractions

At this point of your mathematical education, you know very well that � =
√

2
is the unique positive root of the algebraic equation,

�2 = 2� (6.2)

But there are other ways to “solve” (6.2), as well. For instance, we may
observe that �2 = 2 is equivalent to �2 − 1 = 1. Since �2 − 1 = (� − 1)(� + 1),
this leads us to the following [yet] equivalent equation,

� − 1 = 1
� + 1 �

In other words, � =
√

2 is the unique positive solution to the following
equation:

� = 1 + 1
1 + � � (6.3)

This equation is slightly peculiar, since it can be turned in on itself; namely,

� = 1 + 1

1 +
�

1 + 1
1 + �

�

� �� �
�

= 1 + 1

2 + 1
1 + �

�

Repeat the replacement process two more times, back to back, in order to
see that

� = 1 + 1

2 + 1

2 + 1
1 + �

= 1 + 1

2 + 1

2 + 1

2 + 1
1 + �

�

One might hope that if we repeat this ad infinitum, then we ought to make
the � on the right-hand side vanish in the limit. If this were the case, then
we might anticipate the following result.

√
2 = 1 + 1

2 + 1

2 + 1

2 + 1

2 + 1
2 + · · ·

� (6.4)

49

How would one verify this? The answer lies in first understanding what we
really mean by the preceding “continued fraction.” We can make sense of
it as follows. Define a sequence �1� �2� �3� � � � by setting

�1 := 1� �2 := 1 + 1
2 = 1�5� �3 := 1 + 1

2 + 1
2

= 1�4� �4 := 1 + 1

2 + 1
2 + 1

2

= 1�416̄�

�5 := 1 + 1

2 + 1

2 + 1
2 + 1

2

≈ 1�41379� �6 := 1 + 1

2 + 1

2 + 1

2 + 1
2 + 1

2

≈ 1�414286� � � � �

The general form of this sequence is

��+1 := 1 + 1
1 + ��

for all � ≥ 1� (6.5)

In other words, we are looking at a “recursive form” of (6.3), and the right-
hand side of (6.4) can be understood rigorously as lim�→∞ �� , provided that
the limit existed. In light of these comments, the following is a careful
restatement of the somewhat informal assertion (6.4).

Theorem 6.7. �� →
√

2 as � → ∞.

Proof. We can combine (6.3) and (6.5) to see that for all � ≥ 1,

��+1 −
√

2 =
�

1 + 1
1 + ��

�
−

�
1 + 1

1 +
√

2

�

= 1
1 +

√
2

− 1
1 + ��

= �� −
√

2
(1 +

√
2)(1 + ��)

�

In particular,

�����+1 −
√

2
��� =

����� −
√

2
���

(1 +
√

2)(1 + ��)
< 1

4

����� −
√

2
��� for all � ≥ 1�

since �� ≥ 1 and
√

2 > 1, whence (1 +
√

2)(1 + ��) > 4. The preceding is a
“recursive inequality.” Apply induction to this [do it!] in order to see that

�����+1 −
√

2
��� < 1

4�

����1 −
√

2
��� = 1

4�

���1 −
√

2
��� < 4−��

for all integers � ≥ 1. Among other things, this inequality shows that �� →√
2 [rapidly!] as � → ∞.

Challenge Exercise. For a greater challenge, try to prove that �2�+1 <√
2 < �2�+2 for all � ≥ 0.

50

Challenge Exercise. For an even greater challenge, try to prove that the
sequence �1� �3� �5� � � � is increasing and that �2� �4� �6� � � � is decreasing.

The following serves as a reminder for us to stay humble.

Conjecture (Émile Borel, 1900; 1950). The decimal expansion of
√

2 con-
tains infinitely-many zeros.

Challenge Exercise. Make rigorous sense of the following continued frac-
tion representation of

√
3:

√
3 = 1 + 2

2 + 2

2 + 2

2 + 2

2 + 2
2 + · · ·

�

One can also turn the preceding ideas around.

Example 6.8. Let us evaluate

� := 3 + 1

3 + 1

3 + 1
3 + · · ·

�

First, we guess the answer by noting that if the preceding were well defined
then � would have to be a positive number that solves

� = 3 + 1
� �

Equivalently, � must be a positive root of �2 − 3� − 1 = 0. This equation is a
quadratic and has only two roots: (3 ±

√
13)/2. Therefore, the only positive

choice is
� = 3 +

√
13

2 �

The preceding is not a complete, rational proof because it remains to estab-
lish that the continued fraction representation of � is convergent [that is, it
makes sense]. But now that we know what � has to be we simply define
�1 := 3 and ��+1 := 3 + (1/��) for all � ≥ 2. It is now a good exercise to
prove that �� → � as � → ∞. This does the job.

Challenge Exercise. Prove that

1 + 1

1 + 1

1 + 1
1 + · · ·

= 1 +
√

5
2 �

which is equal to the golden ratio �.

51

Below I list an amusing, nontrivial, example of a classical continued-
fraction expansion.

Theorem 6.9 (Lambert, 1768/1770). For every θ ∈ (−π/2 � π/2),

tan θ = θ

1 − θ2

3 − θ2

5 − θ2

7 − θ2

9 − · · ·

Lambert went on and used this theorem in order to prove the following.

Theorem 6.10 (Lambert, 1768/1770). If θ is a nonzero rational number
then tan θ is irrational.

Since tan(π/4) = 1 is a rational number, the preceding immediately yields
the following interesting byproduct.

Corollary 6.11 (Lambert, 1770). π is irrational.

Lambert’s proof had some weaknesses that were remedied subsequently
by Legendre (1794).

52

7
Elements of Number Theory

With elements of logic and set theory in place, we are ready to tackle some
problems in elementary number theory.

7.1. Division

• If � and � are integers and � �= 0, then we say that � divides �, or � is
divisible by �— and write this in shorthand as “� | �”—when �/� ∈ Z.
We may also write � - � when � does not divide �.

Example 7.1. 2 | 4 but 4 - 2.

• When � is divisible by �, we say that � is a factor or divisor of �, and
� is a multiple of �.

Example 7.2. Choose and fix two nonzero integers � and �, and con-
sider the set

D�(�) := {� ∈ N : (� | �) ∨ (� ≤ �)} �

That is, D�(�) is the collection of all divisors of � that are at most
�. The elements of D�(�) are �� 2�� 3�� � � � � �� where � is a positive
integer such that �� is the largest positive integer ≤ �. In other words,
� = ��/��, and hence |D�(�)| = ��/��.

Proposition 7.3. Let �, �, and � be integers and � �= 0. Then:

1. If � | � and � | �, then � | (� + �);
2. If � | �, then � | �� for all � ∈ Z;
3. If � | �, � �= 0, and � | �, then � | �;
4. If � | � and � | �, then � | �� + �� for all integers �� �.

Proof. To prove 1 note that (� + �)/� = (�/�) + (�/�) is a sum of two
integers when � | � and � | �. The proof of 2 is even simpler: If � | �,
then ��/� = �(�/�) is the product of two integers [� and �/�] and
hence is an integer. In order to establish 3, note that (�/�) = (�/�) ×
(�/�) is a product of two integers, and hence an integer, whenever
� | � and � | �. The final part 4 can be proved similarly using the fact
that (�� + ��)/� = �(�/�) + �(�/�).

53

Theorem 7.4 (The Division Algorithm). For every � ∈ Z and � ∈ N
there exist unique integers � and �, with 0 ≤ � < �, such that � =
�� + �.

Example 7.5. Set � = 5 and � = 2. The division algorithm then yields
the decomposition, 5 = (2 × 2) + 1; that is, � = 1 and � = 2. Of course,
we could also write 5 = (2 × 1) + 3, but this decomposition is not the
one that Theorem 7.4 yields (why not?).

• Theorem 7.4 is not an algorithm per se. But its proof proceeds by
describing an algorithm, sometimes known as Euclid’s algorithm, that
evaluates � and � explicitly.

Proof of Theorem 7.4 (Euclid’s Algorithm). For every � ∈ Z, let us
define

I� := [(� − 1)� � ��)�

Every I� is a half-open, half-closed interval of length one, the I� ’s are
disjoint [that is, I� ∩ I� = ? when � �= �] and ∪�∈ZI� = R. Therefore,
for every � ∈ Z there exists a unique integer � ∈ Z such that � ∈ I�.
Define � := � − 1 and � := � − ��.6 Then, � = �� + � and 0 ≤ � < �.
This proves half of the theorem. For the other half, we need to prove
that this representation is unique.
Let � ∈ I� for some � ∈ Z, and suppose that there exist �1 ∈ Z and
0 ≤ �1 < � such that � = �1�+�1. We need to prove that �1 = �−1 = �;
this will automatically imply that �1 = � = � − (� − 1)� since �1� − �1 =
� = (� − 1)� − �.
Because �1 < �, it follows that � = �1� + �1 < �(�1 + 1) and hence
�1 < �; equivalenly, �1 ≤ � −1. And because �1 ≥ 0, � = �1� +�1 ≥ �1�
and hence �1 ≥ � − 1. This argument verifies that �1 = � − 1, and
completes our proof.

• Let � ∈ Z and � ∈ N be given numbers, and let � and � be the integers
whose existence is guaranteed by Theorem 7.4. The number � is called
the divisor, � is called the dividend, � is called the quotient, and � is
called the remainder. The proof of Theorem 7.4 [Euclid’s algorithm]
shows that � = ��/��. Thus,

� =
��

�

�
and � = � −

��
�

�
� := � mod ��

We read the latter notation as “� mod �.”

Example 7.6. It follows directly from the definitions that ��/�� = �/�
if and only if � | �. Equivalently, � mod � = 0 if and only if � | �.

6This is equivalent to � := ��/�� and � := � − ���/��.

54

Example 7.7. � mod 1 = 0 for all � ∈ Z. This is because Euclid’s
algorithm ensures that � = (�×1)+0 [set � := �]. Similarly, � mod � =
0 because � = (1 × �) + 0 [set � := 1].

Example 7.8. By the Euclid algorithm, 4 = (2×2)+0 and 2 = (0×4)+2.
Therefore,

4 mod 2 = 0 and 2 mod 4 = 2�

Example 7.9. By the Euclid algorithm, 5 = (2 × 2) + 1 and −5 =
(−3 × 2) + 1. Therefore,

5 mod 2 = −5 mod 2 = 1�

7.2. Modular Arithmetic

• If �� � ∈ Z and � ∈ N, then we write � ≡ � [mod �] if and only if
� | (� −�). In this case, we might say that � is congruent to � modulo
�. Many people simply write “� = � [mod �],” and also say that “� is
equal to � modulo �.” We will not do that in order to be slightly more
precise about our notion of “equality.”

• Note that � | (�−�) if and only if � | (�−�). Therefore, the proposition
“� ≡ � [mod �]” is equivalent to the proposition “� ≡ � [mod �].”
More generally, � | (� − �) if and only if � = � + �� for some
� ∈ Z, which is in turn true if and only if � = � + �� for some � ∈ Z.
Therefore, we obtain immediately the following observation.

Proposition 7.10. Let �� � ∈ Z and � ∈ N. Then, the following are
equivalent:

- � ≡ � [mod �];
- � ≡ � [mod �];
- � mod � = � mod �.

The following results hint at the existence of a “modular arithmetic.”

Proposition 7.11. Let �� �� �� � ∈ Z and � ∈ N. If � ≡ � [mod �]
and � ≡ � [mod �], then

� + � ≡ � + � [mod �] and �� = �� [mod �]�

Proof. We can find integers �� � such that � = � + �� and � = � + ��.
Therefore,

� + � = (� + �) + �(� + �) and �� = �� + � [�� + �� + ���] �

This proves the result since � + � and �� + �� + ��� are integers.

55

Corollary 7.12. Let �� � ∈ Z and � ∈ N. Then,

(� + �) mod � =
�

(� mod �) + (� mod �)
�

mod ��

and
�� mod � =

�
(� mod �) × (� mod �)

�
mod ��

Proof. Thanks to Proposition 7.10, the first assertions of this corollary
are respectively equivalent to the following:

� + � ≡ (� mod �) + (� mod �) [mod �]�

and
�� ≡ (� mod �) × (� mod �) [mod �]�

Because � ≡ (� mod �) [mod �] and � ≡ (� mod �) [mod �], the
2 displayed statements follow from Proposition 7.11

7.3. Representation of Integers

• We have already used the fact that real numbers can be written in
various bases. For instance, we can write

1
2 = 5

10 = 0�5 in base ten [decimal],

whereas
1
2 = 1

2 + 0
22 + 0

23 = 0�1 in base two [binary],

and our Babylonian forefathers would have written
1
2 = 30

60 = 0�(30) in based sixty [Sexagesimal].

[The latter is not the same number as 0�3 = 3/60 = 1/20, since base-sixty
digits run from 0 to 59.]
For positive integers, one can also use bases that are less than one.
The following is a careful statement.
Theorem 7.13. Let � ≥ 1 be a fixed integer. Then for every integer
� ≥ 1 we can find unique integers � ≥ 0 and 0 ≤ �0� � � � � �� < � such
that: (i) �� �= 0; and (ii)

� = ���� + ��−1��−1 + · · · + �2�2 + �1� + �0� (7.1)

I will not prove this theorem completely. But I mention that one of
the possible proof strategies goes as follows: If � < �, then � := 0 and
�0 := �. If � ≤ � < �2, then � := 1, �1 := ��/�� and �2 := � mod �. If
�2 ≤ � < �3, then � := 2, �1 = ��/��, �2 := ��/�2�, and �0 := �−�1−�2,
etc. Now proceed in this way, using induction on �, according to when
�� ≤ � < ��+1 for � = 0� 1� � � � �

56

• In the notation of Theorem 7.13, we sometimes write � = (����−1 · · · �0)�
as shorthand for the base-� representation (7.1) of �. Sometimes, we
might also write � = (��� ��−1� � � � � �0)� [with commas] in order to em-
phasize the digits ��� � � � � �0.

Example 7.14. Base-ten arithmetic is the usual decimal arithmetic,
and so we usually do not write (· · ·)10. For instance, (100)10 = 1 · 102 +
0 · 10 + 0 = 100, (2158)10 = 2 · 103 + 1 · 102 + 5 · 10 + 8 = 2158, etc.

Example 7.15. The binary [base two] integer 10101 can be written in
decimal form as

(10101)2 = 1 · 24 + 0 · 23 + 1 · 22 + 0 · 2 + 1 = 37�

Example 7.16. For a more interesting example, note that

(58� 2� 10)60 = 58 · 602 + 2 · 60 + 10 = 208930�

Babylonians used to use base-sixty arithmetic, as was implied earlier
on. Therefore, to a Babylonian, the number 58� 2� 10 is the same num-
ber as the number 208930 is to us.

Example 7.17. The hexadecimal system uses base-sixteen arithmetic.
Thus,

(2� 10� 14� 0� 11)16 = 2 · 164 + 10 · 163 + 14 · 162 + 0 · 16 + 11 = 175627�

Some people, particularly those in computer science, write the digits
of the hexadecimal system as 0� 1� 2� 3� 4� 5� 6� 7� 8� 9� A� B� C� D� E� and
F , where A through F are hexadecimal [single] digit symbols for the
decimal integers 10 through 15. This is done in order to not have to
write commas in the base-16 representation of integers. In this way
we can rewrite the preceding display as (2AE0B)16 = 175627�

• (A change-of-base algorithm.) Suppose we wish to represent a base-
ten integer � in base �. First, use the division algorithm to divide �by
� to obtain a quotient �0 and a remainder �0:

� = ��0 + �0�

where 0 ≤ �0 < � and �0 = ��/��. The �0 term is the �0 of the
representation (7.1) of � that we seek. Now do the same to �0: �0 =
��1 + �1 where �1 := ��0/�� and 0 ≤ �1 < �. Having constructed
(�0 � �0)� � � � � (�� � ��) we construct (��+1 � ��+1) via ��+1 = ��� + �� where
�� := ���/�� and 0 ≤ ��+1 < �. This procedure terminates when the
quotient zeros out; that is once the index � satisfies �� < �. By induction,
this happens when �0 < �� . In this way, the base-� digits of � are
produced, in reverse order as �0� �2� � � � � ��.

57

Example 7.18. Let us find the binary expansion of the decimal integer
� = 12. Here, � = 2:

12 = 2 · 6 + 0
6 = 2 · 3 + 0
3 = 2 · 1 + 1
1 = 2 · 0 + 1�

Therefore, 12 = (1100)2. To check: (1100)2 = 1 · 23 + 1 · 22 + 0 · 2 + 0. X

Example 7.19. The base-3 expansion of 15 is found as follow:

15 = 3 · 5 + 0
5 = 3 · 1 + 2
1 = 3 · 0 + 2�

Therefore, 15 = (220)3. To check: (220)3 = 2 · 32 + 2 · 3 + 0� X

7.4. Examples of Binary Arithmetic

• Perhaps the most straightforward way to do arithmetic in base � is to
translate our numbers to base-ten numbers, perform arithmetic in base
ten, and then translate our numbers back. Because binary arithmetic
is both interesting and important in various disciplines—particularly in
computer science—we concentrate on the case that � = 2.

Example 7.20. Let us add the binary numbers � := (1110)2 and � :=
(1011)2 using the preceding method:

– � = 1 · 23 + 1 · 22 + 1 · 2 + 0 = 14;
– � = 1 · 23 + 0 · 22 + 1 · 2 + 1 = 11;
– Therefore, �+� = 14+11 = 25, in decimal units. Next we convert

25 to binary:

25 = 2 · 12 + 1
12 = 2 · 6 + 0
6 = 2 · 3 + 0
3 = 2 · 1 + 1
1 = 2 · 0 + 1�

This shows us that 25 = (11001)2, and hence � + � = (11001)2.

Example 7.21. We can multiply � := (110)2 and � := (101)2 by like
arguments. Indeed:

– � = 1 · 22 + 1 · 2 + 0 = 6;

58

– � = 1 · 22 + 0 · 2 + 1 = 5;
– Therefore, �� = 6 · 5 = 30, which can be converted to binary as

follows:

30 = 2 · 15 + 0
15 = 2 · 7 + 1
7 = 2 · 3 + 1
3 = 2 · 1 + 1
1 = 2 · 0 + 1�

This tells us that 30 = (11110)2 and hence �� = (11110)2 in binary.

• There are faster ways of adding and multiplying [and dividing] binary
numbers. For instance, we can add by adapting the usual addition
method that we learn in school for decimal numbers.

Example 7.22. The usual way of seeing that 57 + 78 = 125 is to write

1 1
5 7

+ 6 8
1 2 5

Here, the first red 1 is the carry from the computation 5+6 = 1·10+1 =
11 and the second is from 7+8 = 1·10+5 = 15. This method of addtion
works in other bases too, and for similar reasons as it works in base
ten.

Example 7.23. Let us return to Example 7.20 and add � := (1110)2 and
� := (1011)2. This time, however, we will add directly without having
to convert to, and from, base 10.

1 1 1
1 1 1 0

+ 1 0 1 1
1 1 0 0 1

This is a slightly faster way to see that � + � = (11001)2; compare with
Example 7.20.

Example 7.24. Binary multiplication is done as in regular long divi-
sion. For instance, let us revisit Example 7.21 and compute the product
of � := (110)2 and � := (101)2 in this way, without converting to and
from the decimal system.

59

1 1 0
× 1 0 1

1 1 0
0 0 0

+ 1 1 0
1 1 1 1 0

In other words, (110)2 +(101)2 = (11110)2, as was shown before as well.

Example 7.25. For a second, and final, example let us multiply � :=
(11)2 with � := (11)2 using long multiplication. [Equivalently, let us find
�2].

1 1
× 1 1

1 1 1 1
+ 1 1

1 0 0 1

The last line holds because (11)2 + (110)2 = (1001)2. It follows that
�2 = (1001)2. In other words, we have shown, in binary, that 32 = 9.

7.5. Prime Numbers

• We say that an integer � ≥ 2 is a prime number if the only positive
integers ≤ � that divide it are 1 and �. If � ≥ 2 is not a prime number,
then we say that � is a composite number.

Example 7.26. The integers 2, 3, 5, 7, 11, and 13 are prime numbers.

Example 7.27. 2 is the only even prime.

Example 7.28. Many odd numbers are composite numbers; 9 is an
example of such a number since 3 | 9.

• The following is also known as the prime factorization theorem.

Theorem 7.29 (Fundamental Theorem of Arithmetic). For every in-
teger � ≥ 2 there exists a unique integer � ≥ 1 and unique prime
numbers �1 ≤ · · · ≤ �� such that

� = �1 × · · · × ���

• In the preceding context, �1� � � � � �� are called the prime factors of �.

Example 7.30. The prime factors of 54 are 2 and 27 because 54 =
2 × 27, and 2 and 27 are both primes.

60

Example 7.31. Because 12 = 2×2×3 and 2 and 3 are primes, it follows
that the prime factors of 12 are 2 and 3. This example motivates the
following.

• Frequently, we rearrange [and relabel] the prime factors of � so that
they are all distinct. In such cases, we end with � primes �1� � � � � ��—all
different—and write

� = ��1
1 × · · · × ���

� �

where �1� � � � � �� ≥ 0 are integers. In this representation, the prime
factors of � are the �� ’s whose corresponding �� is ≥ 1.

Example 7.32. 12 = 22 × 3 × 50, so the prime factors of 12 are 2 and
3.

Proof of Theorem 7.29 (Existence). At this time we will prove only
that such a prime factorization exists. Its uniqueness will require more
development, and we will return to that in due time.7

We apply induction on �.
Let P(�) denote the proposition that � can be written as a product of
a finite number of prime factors. Clearly P(2) is true; this is because
2 is its own prime factor. Next we assume that P(1) ∧ · · · ∧ P(�) is true,
and then prove conditionally that P(� + 1) is true.
If � + 1 is a prime number, then it is its own prime factor and we can
conclude the truth of P(� + 1) immediately.
If � + 1 is a composite number, then we can write � + 1 = �� where �
and � are integers between 2 and � [inclusive]. The induction hypothe-
sis ensures that � and � each have prime factors, denoted respectively
by �1 ≤ · · · ≤ �� [for �] and �1 ≤ · · · ≤ �� [for �]. Pool the �� ’s and
the �� ’s and order them in order to obtain � + � prime factors for
� + 1 = ��. This proves that P(� + 1) is true in the remaining case
that � + 1 is composite.

Example 7.33. The prime factors of 4 are �1 = �2 = 2, the prime
factors of 9 are �1 = �2 = 3, and the prime factors of 12 are �1 = �2 = 2
and �3 = 3.

• Given an integer � ≥ 2, we might ask when � is a prime number. This
turns out to be a tedious task in general. The fundamental theorem of
arithmetic reduces our task to one about checking to see if � has any
prime divisors.

7One can pay close attention to everything we do from here on in order to ensure that we
will never apply “circular reasoning.” That is, we will never end up proving the uniqueness of
prime factors by inadvertantly assuming their uniqueness. Therefore, it is rationally acceptable
to break up the proof in this way.

61

Example 7.34. 17 is prime number because it is not divisible by 2, 3,
5, 7, 11, or 13. [We do not need to worry about the divisibility of 4, 6,
8, 9, 10, 12, 14, 15, and 16.] But 21 is composite because it divides the
prime number 3 [as well as 7].

• Is 103 a prime number? In order to answer this, we need to check
to see if it has any prime factors other than 1 and 103. This is a
somewhat tedious task. The following can sometimes really speed up
such primality tests.

Theorem 7.35. If � ≥ 2 an integer that has no prime factors ≤
√

�,
then � is a prime number.

Example 7.36. If � = 103 were composite, then it would have at least
one prime factor ≤

√
� ≈ 10�148. Now one can check directly to see

that � - 103 for � = 2� 3� 5� 7. [This requires only 4 verifications!] There-
fore, Theorem 7.35 ensures, by contraposition, that 103 is a prime
number.

Proof of Theorem 7.35. We prove the contrapositive form of the the-
orem. That is, we will prove that if � ≥ 2 is a composite number then
it has at least one prime factor ≤

√
�.

Because � is assumed to be a composite number, Theorem 7.29 en-
sures that � has at least two prime factors �1 ≤ �2. In other words,
we can write � = L�1�2 where L ≥ 1 is an integer and �1� �2 ≥ 2
are primes. The theorem follows because � ≥ �2

1 , equivalently, �1 ≤√
�.

Theorem 7.37 (Euclid, c. 300 BC). There are infinitely-many primes.

Proof. Suppose, to the contrary, that there are finitely many primes.
Then we could list them as 2 ≤ �1 < · · · < ��. Define

� := 1 + (�1 × · · · × ��)�

and observe that
�
��

= 1
��

+
�

1≤�≤�
� �=�

�� �

Because 1/�� ≤ 1/2 < 1, 1/�� is not an integer. Since
�

�≤�: � �=� �� is an
integer it follows that �/�� is not an integer. We can derive a contra-
diction as follows: � cannot be a prime because � > �� and �� is the
largest prime number by our hypothesis; at the same time, � cannot
be composite. For if it were, then � would have at least two prime
factors, a possibility which is ruled out by the fact that � - �� for all
1 ≤ � ≤ �.

62

• Many sources, including your textbook(!), claim that the preceding
proof is not constructive. This is not quite correct. The preceding
proof shows that if 2 = �1 < �2 < � � � < �� are the first � prime num-
bers, then � := 1+(�1×· · ·×��) is an explicitly-constructed prime num-
ber that is not among {�1 � � � � � ��}. Examples of such prime numbers
are � = 1+2 = 3 [� = 1], � = 1+(2×3) = 7 [� = 2], � = 1+(2×3×5) = 31
[� = 3], � = 1 + (2 × 3 × 5 × 7) = 211� etc. What these sources might
mean is that this sort of construction [of ever-larger prime numbers]
is tedious.

• Let us elaborate a little more on the preceding. It turns out to be
important to know a good way to compute a prime P > �, for a fixed
known prime number �. The preceding proof does not show us how to
do that. In fact, there are no simple, known, ways of doing this. There
are, however, algorithmically-efficient methods of deciding when P :=
2� − 1 is a prime when � is a prime number. Prime numbers that
have the form 2� − 1 [for some prime number �] are called Mersenne
primes. For instance, 3 = 22 −1 is a Mersenne prime; so are 7 = 23 −1,
31 = 25 −1, 127 = 27 −1, and 511 = 29 −1. Warning: Not every number
of the form 2� − 1 for prime � is a Mersenne prime. Two examples
are 15 = 24 − 1 and 255 = 28 − 1.

• The following is one of the highlights of 19th-century number theory
and yields an asympotically-correct estimate of the number of primes
≤ �, as � → ∞.

Theorem 7.38 (The Prime-Number Theorem, 1896). For every inte-
ger � ≥ 2, let π(�) denote the number of prime numbers that are
≤ �. Then,

lim
�→∞

π(�)
�/ ln � = 1�

Of course, π(2) = 1, π(3) = π(4) = 2, π(5) = 3, etc. The prime number
theorem states that

π(�) ≈ �
ln � when � � 1�

where “ln” denotes the natural logarithm. This theorem was discov-
ered independently, and at the same time, by Jacques Hadamard and
Charles Jean Gustave Nicholas de la Vallée–Poussin in 1896. There are
now many proofs of this theorem. As far as I know, all of them are
beyond the scope of this course.

7.6. Divisibility Rules

• Let � ≥ 2 be an integer. In order to test for primality, we first ask the
following type of questions:

63

– “Is � divisible by 2”?
– “Is � divisible by 3”?
– “Is � divisible by 5”? Etc.

• Are there simple ways to answer such questions? The answer is, not
surprisingly, no. However, there are easy divisibility tests for the pre-
ceding 3 concrete questions. In fact, you undoubtedly know many, or
perhaps all, of the following rules.
Proposition 7.39. 2 | � if and only if the last decimal digit of � is
either divisible by 2 or is equal to 0. Similarly, 5 | � if and only if the
last decimal digit of � is either divisible by 5 or is equal to 0.
Example 7.40. 130, 25, and 15 are divisible by 5, but only 130 is divisible
by 2 in this same list.

Still, many of you most likely do not know why these divisibility rules
work. Here is a proof.

Proof of Proposition 7.39. Apply the fundamental theorem of arith-
metic and write � = �0 + 10�1 + 100�2 + · · · + 10��� where �� �= 0, and
0 ≤ �0� � � � � �� < 10 and � ≥ 0 are integers. The proposition is true
because

�
2 = �0

2 + 10
2 �1 + 102

2 �2 + · · · + 10�

2 ���

and
�
5 = �0

5 + 10
5 �1 + 102

5 �2 + · · · + 10�

5 ���

Since the coefficients of �1� � � � � �� are always integers, in both cases,
it follows that �/2 ∈ N ↔ [(2 | �0) ∨ (�0 = 0)], and, in like manner,
�/5 ∈ N ↔ [(5 | �0) ∨ �0 = 0]. This completes the proof.

Divisibility by 3 is a slightly different rule.
Proposition 7.41. 3 | � if and only if the sum of all of the digits of �
is divisible by 3.
Example 7.42. 126 is divisible by 3 because 1 + 2 + 6 = 9 is. Similarly,
3 | 1290 because 1 + 2 + 9 + 0 = 12 is divisible by 3.

Proof of Proposition 7.41. Apply the fundamental theorem of arith-
metic and write � = �0 + 10�1 + 100�2 + · · · + 10��� where �� �= 0, and
0 ≤ �0� � � � � �� < 10 and � ≥ 0 are integers. Therefore,

�
3 =

��

�=0

10���
3 =

��

�=0

��
3 +

��

�=0

�
10�

3 − 1
3

�
��

= �0 + · · · + ��
3 +

��

�=1

�
10� − 1

3

�
���

64

Therefore, it remains to prove that

∀� ∈ N : 3 | (10� − 1)�

But this should be clear: Choose and fix an integer � ≥ 1. Because
10� − 1 is a consequtive string of � nines, (10� − 1)/3 is a consequtive
string of � threes.

Challenge Exercise. Choose and fix an arbitrary integer � ≥ 1. Prove
that, indeed, 10� −1 is a consequtive string of � nines by verifying, using
properties of geometric series, that

10� − 1 = 9
�−1�

�=0
10� �

and the latter is the fundamental theorem of arithmetic’s representa-
tion of 999 · · · 999 [� nines].

Challenge Exercise. For a greater challenge, see if you can prove
other “divisibility rules” from antiquity. You can find a partial list of
some of these rules [without proofs; including the previous rules] in
the math-education website “Math is Fun”:

http://www.mathsisfun.com/divisibility-rules.html.

7.7. GCDs, LCMs, and the Euclidean Algorithm

• Let �� � denote two nonzero integers. Then, the greatest common
divisor of � and � is

gcd(� � �) := max {� ∈ N : (� | �) ∧ (� | �)} �

• Because 1 | � and 1 | �, it it always the case that

1 ≤ gcd(� � �) ≤ min(� � �)�

Example 7.43. The common divisors of 12 and 18 are 1, 2, 3, and 6.
Therefore, gcd(12 � 18) = max{1� 2� 3� 6} = 6.

Example 7.44. The only common divisor of 5 and 8 is 1. Therefore,
gcd(5 � 8) = 1.

• Two integers �1 and �2 are said to be relatively prime if gcd(�1 � �2) =
1. Let {�1 � � � � � ��} be a set of � integers. Then the �� ’s are said to be
pairwise relatively prime if gcd(�� � ��) = 1 whenever � �= � .

• For every �� � ∈ N, the least common multiple of � and � is

lcm(� � �) := min {� ∈ Z : (� | �) ∧ (� | �)} �

65

• Since � | �� and � | ��, it follows that lcm(� � �) ≤ ��. And of course,
lcm(� � �) ≥ max(� � �).

• Let �� � ∈ N be fixed. We can always write the prime factorization
of � and � as follows: There exists an integer � ≥ 1, distinct prime
numbers �1� � � � � �� , and nonnegative integers �1� � � � � ��� �1� � � � � �� ≥ 0
such that

� = ��1
1 · · · ���

� =
��

�=1
���

� � and � = ��1
1 · · · ���

� =
��

�=1
���

� �

Then it is relatively easy to check that

gcd(� � �) =
��

�=1
�min(�� ���)

� � and lcm(� � �) =
��

�=1
�max(�� ���)

� �

In this way, one can compute the gcd and lcm of reasonably-large
numbers reasonably quickly.

• This is not a good method when the numbers are very large, since it is
tedious to compute the prime factorization of a very large integer. A
better method—the socalled “Euclidean algorithm”—will present itself
soon.

Example 7.45. Since 225 = 20 × 32 × 52 and 270 = 21 × 33 × 51, we may
use the preceding in order to see that

gcd(225 � 270) = 20×32×51 = 45 and lcm(225 � 270) = 21×33×52 = 1350�

Example 7.46. 27225 = 20 × 32 × 52 × 112, 359370 = 21 × 33 × 51 × 113.
Therefore,

gcd(27225 � 359370) = 20 × 3251 × 112 = 49005 and
lcm(27225 � 359370) = 21 × 33 × 52 × 113 = 1796850�

• The following tells us that, if we know the value of gcd(� � �) then
we simply observe that lcm(� � �) = ��/ gcd(� � �), which is easy to
compute. This is why we will not talk much about lcm, per se, and
concentrate more on gcd.

Proposition 7.47. For all �� � ∈ N,

�� = gcd(� � �) · lcm(� � �)�

Proof. Write the prime factorization of � and �, using the same distinct
primes �1� � � � � �� , as

� =
��

�=1
���

� and � =
��

�=1
���

� �

66

Then clearly,

�� =
��

�=1
��� +��

� and gcd(� � �) · lcm(� � �) =
��

�=1
�min(�� ���)+max(�� ���)

� �

The result follows simply because α + β = min(α � β) + max(α � β) for
every two real number α and β. The latter result itself is true because
one of (α � β) is the minimum and the other is the maximum.

• The Euclidean algorithm is a neat way of computing the greatest com-
mon divisor of two positive integers.

Lemma 7.48 (The Euclidean Algorithm). For all integers � ≥ � ≥ 1,

gcd(� � �) = gcd (� � � mod �)

Proof. The lemma can be recast in the following equivalent way: If
�� �� �� � are positive integers such that � = �� + �, then

gcd(� � �) = gcd(� � �)�

Suppose � is a common divisor of � and �. Since

�
� = �

�
�
�

�
+ �

� � �
� = �

� − �
�

�
�

�
�

it follows that � | �. This shows that all common divisors are � and
� are also common divisors of � and �. One proves similarly [check
this!!] that all common divisors of � and � are also common divi-
sors of � and �. From this we conclude that the common divisors of
(� � �) agree with the common divisors of (� � �), and hence so do their
maxima.

• We can see how to implement the preceding, as an actual algorithm,
via a few examples.

Example 7.49. For purposes of comparison, let us revisit Example 7.45
and compute gcd(225 � 270), but now using the Euclidean algorithm.

270 = 225 · 1 + 45 � gcd(225 � 270) = gcd(225 � 45)
225 = 45 · 7 + 0�

Therefore, gcd(270 � 225) = gcd(225 � 45) = 45.

• The Euclidean algorithm is more efficient than the one in which we
compute all prime factors. Here is another example.

67

Example 7.50. Let us compute gcd(1206 � 578):

1206 = 578 · 2 + 50 . . . � gcd(1206 � 578) = gcd(578 � 50)
578 = 50 · 11 + 28 . . . � gcd(578 � 50) = gcd(50 � 28)
50 = 28 · 1 + 22 . . . � gcd(50 � 28) = gcd(28 � 22)
28 = 22 · 1 + 6 . . . � gcd(28 � 22) = gcd(22 � 6)
22 = 6 · 3 + 4 . . . � gcd(22 � 6) = gcd(6 � 4)
6 = 4 · 1 + 2 . . . � gcd(6 � 4) = gcd(4 � 2)
4 = 2 · 2 + 0�

In other words, gcd(1206 � 578) = gcd(4 � 2) = 2.

68

8
Elements of Cryptography

8.1. Symmetric Ciphers

• I wish to send you a message such as

HELLO WORLD,

but wish to encrypt it so that someone who intercepts this message
cannot understand the content of my message to you. An old idea is
to send you instead a code, or a cipher, or an encryption. In order for
me to send you a secret message, you and I need to have a common
codebook, or a key. Here is an example of a codebook:

Text	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Code| T * Q U W 0 & P C H K V G ^ % + ~ S Z R E A I J ? /

Now, instead of “HELLO WORLD,” I will send you the coded message,

PWVV% I%SVU.

You can decode this, using our common key and extract “HELLO WORLD,”
as I had wished.

• All such methods are called symmetric because the sender and the
receiver both use the same key: The former uses it to encode his or
her message, and the latter uses it to decode the received cipher.

• Symmetric encryption works well only when both parties change their
codebooks frequently, particularly when the codes are always short, in
addition. In the absence of such conditions, and with enough incentive
and computational prowess, symmetric codes can be deciphered.

• One can make a small modification to the preceding method in order
to avoid having to use different codebooks frequently. For instance,
we can imagine a key with 25 built-in codes, all in one:8

8The 26th possible such code—could be Code 0—is the actual alphabet, which we do not plan
to use ©.

69

Text	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Code 1 | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
-------|--
Code 2 | C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
-------|--
Code 3 | D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
-------|--

.

.

.
-------|--
Code 25| Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

• One can use this larger key, for example, as follows. We can agree,
ahead of time, that I will prefix my message with an integer N—between
1 and 25—which will tells you that you should used Code N in order to
decode the rest of my message. Thus, for example,

1 IFMMP XPSME

is a way of telling you “HELLO WORLD.” And

2 JGNNQ YQTNF

is another way of doing the same thing.

• Julius Ceasar is reputed to have used such ciphers in order to send
secret messages to his troops.

• It is particularly easy to do this sort of thing using a computer. First
you need an array [or function] which codes the alphabet into integers,
and vice versa, say as follows:

m	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
f(m)| A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

So now “HELLO WORLD” is the same thing as

0704111114 2214171103.

• We can observe that �1(�) := � + 1 mod 26 defines a function that
maps our list 00,01,02,...,24,25 to a “shifted list, 01,02,03,...,25,00.
This is the same sort of shift that occurs when we go from the En-
glish alphabet to Code 1. In general, �N (�) := � + N mod 26 shifts
the sequences 00,01,02,...,24,25 N times. We can also think of
�2 = �1 ◦ �1, �3 = �1 ◦ �1 ◦ �1, etc. (why?).

70

• Now consider a Ceasar cipher N�1�2�3 · · · where 1 ≤ N ≤ 25, which
we represent with two digits, and the �� ’s are integers between 00 and
25. In order to decode the ��� letter �� , you now compute ��+N mod 26.

Example 8.1. We can decode our Ceasar-type cipher

0121132124031617

as 22142225041718, which when translated back to English using the
function f yields “WOWZERS.” Similarly, the Ceasar cipher

0721132124031617 (8.1)

is our code for 02200205102324, which in English is the nonsense word,
“CUZKXY.”

• So far, you have seen how to decode a Ceasar-type code quickly using
modular arithmetic. The reverse process is also both meaningful and
useful. That is the process of writing a code. In order to write a code
you simply reverse the process of decoding.

Example 8.2. One can code the nonsense word “CUZKXY” as follows:
Apply the function f to see that the word “CUZKXY” is the same thing as

02200205102324 (8.2)

on our computer. If we wish to write a Ceasar code using Code N,
we then subtract every number by N [mod 26]. So, for example, if I
wish to use Code 7 to write a cipher of “CUZKXY,” I subtract from every
number in (8.2) the digit 7 [mod 26]. Observe that 2 − 7 mod 26 =
−5 mod 26 = 21, 20−7 mod 26 = 13, etc. Therefore, “CUZKXY” is coded,
using Code 7, as

21132124031617�

This is how (8.1) came about.

8.2. Fancier Symmetric Coding Methods

• There is no reason to be stuck with simple one-computation-fits-all
methods. Our procedure for coding could involve making several
complex steps. As long as all steps are reversible, this procedure [if
you want a 1-1, onto function between all messages and all codes]
produces a code that can be decoded by anyone who has the key.

Example 8.3. One can, for instance, use the following cipher method:

1. Convert using f the code to a string of integers from 0 to 25;
2. Add one [mod 26] and then convert all letters to base 2.

71

For instance, we can encrypt “HELLO,” in this way, by first apply f to
obtain 0704111114, then add one [mod 26] to obtain 0805121215 and
then convert to base 2 in order to obtain the following:9

(1000)(110)(1100)(1100)(1111)� (8.3)

You should be able to start with this, reverse the coding process, and
obtain HELLO, perhaps after a little effort.

• Even the most complex symmetric codes can be broken once one has
the key, or sometimes even information about the key. A particularly
noteworthy example from our history is the socalled Enigma Code, a
sophisticated code used by the Nazi Germany. It is believed that the
fact that this code was broken by the Allies in the second World War
contributed significantly to the outcome of that war.

8.3. Asymmetric Cryptography

• In asymmetric cryptography, everyone uses two keys of their own
devise. One key is used for encyption, the other is used for decryption.

• Everyone’s encryption key is known as their public key. It is called
this, because in fact everyone freely publishes their public keys online
for public access. In this way, you can see that it is easy to encrypt
messages in asymmetric systems.

• The more interesting key in asymmetric cryptography is one’s private
key. That is the key each person uses to decrypt messages. This key
is not shared with anyone else.

• The idea behind asymmetric cryptography is to find private keys that
are very hard to guess.

• Asymmetric methods tend to require a lot more modular arithmetic.
So far, we have used extensively modular addition and subtraction. We
will need modular division, inversion, exponentiation, etc., in order to
perform closer-to-modern asymmetric ciphering.

9If you do not like to have parentheses in your code—and most folks do not—then you can use
5-digit representations of binary numbers. The reasons for opting for 5-digit representations
is that the largest five-digit binary number is 11111 = 31 > 25, whereas the largest four-digit
binary can code upto 1111 = 15 < 25 only. In other words, we cannot represent all integers
between 0 and 25 using four binary digits, but we can with five [or more] binary digits. In any
case, we can write the number in (8.3), without parentheses, as

01000 00110 01100 01100 01111 �

72

9
Modular Inversion

Let us now return to modular arithmetic. So far, we have seen modular
addition [�+� mod �], modular subtraction [�−� mod � = �+(−�) mod �],
and modular multiplication [�� mod �]. In order to continue developing
modular arithmetic, we need modular division and perhaps even more. It
turns out that the key to modular division is to first understand how to invert
a number in modular arithmetic.10 This turns out to be a delicate matter
which requires taking a detour.

9.1. Bézout’s Theorem

• The first step in this journey is the statement that gcd(� � �) is always an
integer linear combination of � and � for every two positive integers
� and �.

Theorem 9.1 (Bézout’s theorem). For every �� � ∈ N we can find
�� � ∈ Z such that

gcd(� � �) = �� + ���

Proof. The proof is non constructive. Consider the set M of all integer
linear combinations of � and �; that is, M := {�� + �� : �� � ∈ Z}� Let
� ≥ 1 denote the smallest positive element of M. By the definition of
� we can find �0� �0 ∈ Z such that

� = ��0 + ��0�

We will prove that � = gcd(� � �). This will prove the theorem with
� = �0 and � = �0.
According to the division algorithm we can write uniquely,

� = �� + � = (��0 + ��0)� + ��

where �� � ∈ Z and 0 ≤ � < �. This tells us that � is itself an integer
linear combination of � and �; that is, � ∈ M. If it was the case that

10This is a fact that you all know in real—as opposed to integer—arithmetic. In real arthmetic,
the reason is simply that �/� = � · �−1 for all real numbers � and � �= 0, where �−1 = 1/� is
the inverse of �. And if � = 0, then � does not have an inverse. Therefore, it does not make
sense to divide � by � in that case.

73

� > 0, then the minimality of � would imply that � ≥ �. This cannot
happen since 0 ≤ � < �, and leaves � = 0 as the only possibility. In
other words, we have proved that � | �. We apply the same argument
to � in order to see that � | �. This proves that � is a common divisor
of � and �, and hence not bigger than the largest common divisor; i.e.,

gcd(� � �) ≥ ��

Let � := gcd(� � �) and note that � divides �� + �� for all �� � ∈ Z.
In particular, � divides � and hence � ≥ �. This and the preceding
display together complete the proof.

• The integers � and � are referred to as Bézout coefficients of � and �
respectively. Their choice is not unique.

Example 9.2. Consider � = 120 and � = 64. We can apply the Eu-
clidean algorithm to find gcd(120 � 64) as follows:

120 = 64 · 1 + 56
64 = 56 · 1 + 8
56 = 8 · 7 + 0�

Therefore, gcd(120 � 64) = 8. Apply the second line to obtain the iden-
tity, 8 = 64 · 1 + 56 · (−1); and then use the first line in order to write 8
as an integer linear combination of 64 and 120, as follows:

8 = 64 · 1 + (120 − 64 · 1) · (−1) = 120 · (−1) + 64 · 2�

This shows that (−1 � 2) are Bézout coefficients of (120 � 64). Because
120 · 7 + 64 · (−13) = 8� another pair of Bézout coefficients of (120 � 64)
is (7 � −13).

• Bézout’s theorem has a number of consequences. Let us begin with a
rather natural one. Recall that �� � ∈ Z are said to be relatively prime
if 1 is the only positive integer that divides � and �; equivalently, that
gcd(� � �) = 1.

Lemma 9.3. Suppose �, �, and � are positive integers, � and � are
relatively prime, and � | ��. Then, � | �.

Proof. Because gcd(� � �) = 1, Bézout’s theorem allows us to write
�� + �� = 1 for integers � and �. In particular, ��� + ��� = � and
hence � | � because � | ��.

We can use Lemma 9.3 to complete our proof of the fundamental
theorem of arithmetic by proving the uniqueness of the prime factors.

74

Proof of Theorem 7.29 (Uniqueness). It remains to prove the follow-
ing: Suppose � ≥ 2 is an integer with prime factors �1 ≤ · · · ≤ ��. If
�1 ≤ · · · ≤ �� are also prime factors for �, then � = � and �� = ��
for all �. In other words, we have to prove that if

�1 · · · �� = �1 · · · ��� (9.1)

and the �� ’s and the �� ’s are all primes, then � = � and �� = �� for all
1 ≤ � ≤ �.
Suppose the assertion about the equality of the � ’s and �’s is false.
Then, we may assume, without loss of generality, that there are no
common primes on the two sides of (9.1). Otherwise, we can cancel
them by dividing both sides of (9.1) by the common primes. With
this convention in mind, note that �1 · · · �� is divisible by �1 but �1 and
�1 are relatively prime. Therefore, �2 · · · �� is divisible by �1 [Lemma
9.3]. Apply induction in order to see that �� is divisible by �1. But this
cannot happen. This yields the desired conclusion.

9.2. Modular Inversion

• Now we can return to the matter of inversion modulo �.
Proposition 9.4. Suppose � ∈ Z, � ≥ 2 is an integer, and � has
an inverse modulo �. Then � and � are relatively prime; that is,
gcd(� � �) = 1.

Proof. Let � denote the inverse modulo � of �. That is, � ∈ Z sat-
isfies �� ≡ 1 [mod �]. This property is equivalent to �� mod � =
1 mod �; see Proposition 7.10, page 55. Because � ≥ 2, we can see
that 1 mod � = 1, and hence �� mod � = 1. In other words,

�� = �� + 1 for some integer �.

Let � denote an arbitrary positive common divisor of � and �. Then
there exist � ∈ Z and � ∈ N such that � = �� and � = �� , and hence

��� = ��� + 1� equivalently �� = �� + �−1�

Since �� and �� are integers, the preceding implies that 1/� ∈ N. Thus,
� and 1/� are both greater than one; and hence, � = �−1 = 1.11 This
completes the proof.

• The preceding proposition shows that if we wanted to invert � modulo
�, then we have to consider only the cases where � and � are rela-
tively prime. Conversely, the following theorem states that if � and �
are relatively prime—that is, if gcd(� � �) = 1—and � ≥ 2, then:

11Indeed, we can multiply both sides of the inequality, 1 ≤ �−1 by � in order to deduce that
� ≤ 1 ≤ �, and hence � = 1.

75

– � indeed has an inverse modulo �; and
– that inverse of � is unique modulo �.

The precise statement follows.

Theorem 9.5. If �� � ∈ Z are relatively prime and � ≥ 2, then there
exists � ∈ Z such that �� ≡ 1 [mod �]. Moreover, if � ∈ Z is any
other inverse of � modulo �, then � ≡ � [mod �].

Proof. Since gcd(� � �) = 1, we can write 1 = �� + �� for �� � ∈
Z, using Bézout’s theorem [Theorem 9.1]. In particular, �� + �� ≡
1 [mod �]; and this implies that �� ≡ 1 [mod �].

The integer � is an inverse to � modulo �. (9.2)

For the uniqueness portion, suppose we can find an integer � such that
�� ≡ 1 [mod �]. Then clearly, �� − �� ≡ 0 [mod �]; equivalently,
� | (� − �)�. Because � and � are relatively prime, � - �; therefore,
it has to be the case that � | (� − �). This is another way to say that
� ≡ � [mod �].

• Once we have a modular inverse, modular division follows.

Theorem 9.6. Suppose � ∈ N and �� �� � ∈ Z satisfy �� ≡ �� [mod �].
If, in addition, � and � are relatively prime, then � ≡ � [mod �].

Proof. Let �−1 denote any inverse of � modulo �. This integer ex-
ists because � and � are relatively prime [Theorem 9.5]. Since �� ≡
�� [mod �] and ��−1 ≡ 1 [mod �], two repeated appeals to Proposi-
tion 7.11 [page 55] imply that

� mod � = ���−1 mod � = ���−1 mod � = � mod ��

This is equivalent to the theorem.

• The proof of Theorem 9.6 codifies an essentially-obvious operation: If
�� = �� in arithmetic-mod-�, then we can multiply both sides by �−1

[mod �] in order to see that � = � [mod �].12

• The proof of Theorem 9.5—see (9.2)—also shows us how we can find
the inverse of � modulo � when gcd(� � �) = 1: If � and � are Bézout
coefficients of � and �, that is if 1 = gcd(� � �) = �� + ��, then � is
the desired inverse of � modulo �.

12To be extra careful, we write � ≡ � [mod �] instead of “� = � [mod �]” in order to
remind ourselves that this is equality modulo � and not equality.

76

Example 9.7 (From your text, p. 276). We can find an inverse to 101
modulo 4620 in 2 easy steps.
Step 1. First, we need to check that indeed 101 and 4620 are relatively
prime; else, there is no inverse to look for. In order to do that, we
compute gcd(101 � 4620) using the Euclidean algorithm:

4620 = 45 · 101 + 75 � we now need gcd(101 � 75);
101 = 1 · 75 + 26 � we now need gcd(75 � 26);
75 = 2 · 26 + 23 � we now need gcd(26 � 23);
26 = 1 · 23 + 3 � we now need gcd(23 � 3);
23 = 7 · 3 + 2 � we now need gcd(3 � 2);
3 = 1 · 2 + 1 � we now need gcd(2 � 1) = 1�

The preceding shows that gcd(101 � 4620) = gcd(2 � 1) = 1. In other
words, we see that 101 and 4620 are indeed relatively prime.
Step 2. Next, we work our way up the preceding computation in order
to find the Bézout coefficients of 101 and 4620:

1 = 3 − 1 · 2
= 3 − 1 · [23 − 7 · 3] = (−1) · 23 + 8 · 3
= (−1) · 23 + 8 · [26 − 1 · 23]
= 8 · 26 + (−9) · 23
= 8 · 26 + (−9) · [75 − 2 · 26] = (−9) · 75 + 26 · 26
= (−9) · 75 + 26 · [101 − 1 · 75] = 26 · 101 − 35 · 75
= 26 · 101 − 35 · [4620 − 45 · 101] = (−35) · 4620 + 1601 · 101�

Therefore, the inverse of 101 modulo 4620 is 1601. Interestingly enough,
we can also see that the inverse of 4620 modulo 101 is -35.

77

