Math 1070-2: Spring 2008 Lecture 9

Davar Khoshnevisan
Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

March 26, 2008

Confidence intervals

- A point estimate is a single number that is our "best prediction" for the parameter of interest. [Natural]
- An interval estimate is an interval of numbers within which the parameter value is believed to fall. [Requires math]
- Example: Avg. ht. was 70 " in a random sample of size 100. Point estimate for the actual "population height" is 70 inches
- Example: In a random sample of 500, 45\% voted for Party X. Point estimate for the percentage of votes, in that population, for Party X is 45%
- Goal: Given a certain percentage (say 98\%), find a random interval that contains the parameter with probability at least that percentage.

Confidence intervals for proportions

 [recap]- $\hat{p}=$ " p hat" = sample proportion
- Then,

$$
\hat{p} \pm(\ell \times S E)=\hat{p} \pm\left(\ell \times \sqrt{\frac{p(1-p)}{n}}\right)
$$

- What is ℓ ? [for $95 \%, \ell=1.96$; for $99 \%, \ell=2.58$]
- A good approximation:

$$
\hat{p} \pm\left(\ell \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
$$

An example

[recap]

- A market survey organization took a simple random sample of 500 households in a certain town with 25,000 households: 79 of the sampled households had computers. Is it possible to find a $95 \% \mathrm{CI}$ for the percentage of all 25,000 households with computers?
- You bet it is possible!
- $\hat{p}=79 / 500=0.158[\approx 15.8 \%$; point estimate for $p]$
- SE:

$$
\mathrm{SE} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \approx 0.0163
$$

- $95 \% \mathrm{Cl}$ for $p:$

$$
0.158 \pm(1.96 \times 0.0163)=0.158 \pm 0.031948
$$

- p is somewhere between $0.126=12.6 \%$ and $0.19=19 \%$ [95\% confidence = ????]

An example

```
# 7.7, p. }32
```

- 1998 data: "Do you believe in heaven"? $[n=1158]$
- $\hat{p}=0.86$ [proportion of "yes."]
- SE:

$$
\mathrm{SE}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.86 \times(1-0.86)}{1158}} \approx 0.0102
$$

- $95 \% \mathrm{Cl}$ for the proportion of "yes" for "heaven"

$$
\hat{p} \pm(1.96 \times \mathrm{SE}) \approx 0.86 \pm(1.96 \times 0.0102) \approx 0.84 \text { to } 0.88
$$

- What does this mean?
- Aside: "MOE" here is $1.96 \times 0.0102 \approx 0.02$.

Confidence intervals at large

- General philosophy:

Confidence interval $=$ point estimate \pm margin of error

- Example: For proportions [at 95\%]

$$
\text { Confidence interval }=\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- "Therefore": For means [at 95\%]

$$
\text { Confidence interval }=\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}
$$

- "Therefore": For means with σ unknown but n large [at 95\%]

$$
\text { Confidence interval }=\bar{x} \pm 1.96 \frac{s}{\sqrt{n}}
$$

An example

Example 6, pp. 334-335

- Recent GSS [General Social Survey]: "On the average day, about how many hours do you personally watch television?"
- Some results (Minitab):

Variable	n	mean	SD	SE mean	$95 \% \mathrm{CI}$
TV	905	2.983	2.361	0.0785	$(2.83,3.14)$

- Some questions:
- What do the sample mean and SD suggest about the shape of the population distribution?
- How did the software compute stadard error? What does it mean?
- Interpret the $95 \% \mathrm{Cl}$ reported by the software.

An example

\#7.25, p. 343

- 2002 GSS: "What do you think is he ideal number of children for a family to have?"
- 497 women responded; median = 2 ; mean $=3.02$; $\mathrm{SD}=$ 1.81
- Point estimate of the population mean = ?
- 3.02
- SE mean = ?
- $1.81 / \sqrt{497} \approx 0.0811$
- $95 \% \mathrm{Cl}$ for the mean = ?
- $3.02 \pm(1.96 \times 0.0811)=(2.86,3.17)[$ Note the text's discrepancy]
- Is it plausible that $\mu=2$?
- No [95\% sure]

Cl's for means via the t-distribution

- The problem: Find a CI for μ, as before:

$$
\text { Confidence interval }=\bar{x} \pm\left(z \times \frac{\sigma}{\sqrt{n}}\right)
$$

- If σ unknown but n large, then $\sigma \approx s$ with very high probab. Therefore,

$$
\text { Confidence interval }=\bar{x} \pm\left(z \times \frac{s}{\sqrt{n}}\right)
$$

- If n small, then hopeless in general ...except
- If the underlying population is normal, then

$$
95 \% \text { confidence interval }=\bar{x} \pm\left(t_{0.025} \times \frac{s}{\sqrt{n}}\right)
$$

The t-distribution

- The " t-distribution with $(n-1)$ degrees of freedom [df]" looks like the normal distribution
- It is not a normal distribution, though
- Tabulated in Table B [A3 in Appendix A]

(1The [Student's] t-distribution was found by William S. Gosse [1876-1937; aka "Student"] in 1908

- Gosse was in charge of QC for The Guinness

Brewing Company in Dublin

The t-table

Examples

- For a 95\% CI:
- If $n=3$, then $\mathrm{df}=2$ and $t_{0.025}=4.303$ [$\left.\gg 1.96\right]$
- If $n=10$, then $\mathrm{df}=9$ and $t-0.025=2.262$ [>1.96]
- If $n=50$, then $\mathrm{df}=49 \approx 50$ and $t_{0.025}=2.009$
- If $n=99$, then $\mathrm{df}=98 \approx 100$ and $t_{0.025}=1.984[\approx 1.96]$
- What is going on?
- What if we want a $99 \% \mathrm{Cl}$, say?
- Ans: Find $t_{0.005}$.

An example

\#7.6, p. 321

- Starting salary for $n=3$ recent math. grads from NCSU
- Data: 45K, 35K, and 55K
- Point estimate for the mean starting salary of all recent math. grads from NCSU: $(45+35+55) / 3=45 \mathrm{~K}$
- $S D$ of data $=10 \mathrm{~K}$
- If salaries are \approx normal, then a $95 \% \mathrm{Cl}$ is $[\mathrm{df}=2]$

$$
\mathrm{Cl}=45 \pm\left(t_{0.025} \frac{s}{\sqrt{n}}\right)=45 \pm\left(4.303 \times \frac{10}{\sqrt{3}}\right) \approx(20.16,69.8)
$$

- How reliable is the point estimate?

The normal assumption

- The t-confidence interval is valid exactly only when the underlying population is \approx normal
- What if the underlying population is almost normal?
- Good news: The Cl is "robust" under slight deviations from normality
- To check: plot the histogram, and think.
- Bad news: None of our methods are robust [or any good, for that matter] under "nonrandom" sampling
- Fact: If n is large, then the t-distribution is almost standard normal

Choosing the sample size

- Question: How big a sample size do we need in order to have a MOE of size m
- For proportions, the MOE for a $95 \% \mathrm{Cl}[f o r p]$ is

$$
m=1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

provided that n is large

- l.e.,

$$
m^{2}=3.8416 \times\left(\frac{\hat{p}(1-\hat{p})}{n}\right)
$$

- Solve:

$$
n=3.8416 \times\left(\frac{\hat{p}(1-\hat{p})}{m^{2}}\right)
$$

- General formula [p. 348], but you are expected to do this on your own in the final exam

Choosing the sample size

- For means, the MOE for a $95 \% \mathrm{Cl}[f o r p]$ is

$$
m=1.96 \frac{\sigma}{\sqrt{n}}
$$

provided that n is large

- I.e.,

$$
m^{2}=3.8416 \times\left(\frac{\sigma^{2}}{n}\right)
$$

- Solve:

$$
n=3.8416 \times\left(\frac{\sigma^{2}}{m^{2}}\right)
$$

- If this n is large and σ is not known, then $s \approx \sigma$
- General formula [p. 349], but you are expected to do this on your own in the final exam

