Math 1070-2: Spring 2008 Lecture 9

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

March 26, 2008

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Confidence intervals

[recap]

- A point estimate is a single number that is our "best prediction" for the parameter of interest. [Natural]
- An interval estimate is an interval of numbers within which the parameter value is believed to fall. [Requires math]
- Example: Avg. ht. was 70" in a random sample of size 100. Point estimate for the actual "population height" is 70 inches
- Example: In a random sample of 500, 45% voted for Party X. Point estimate for the percentage of votes, in that population, for Party X is 45%
- Goal: Given a certain percentage (say 98%), find a random interval that contains the parameter with probability at least that percentage.

Confidence intervals for proportions [recap]

• $\hat{p} = \text{``p hat''} = \text{sample proportion}$

Then,

$$\hat{p} \pm (\ell \times SE) = \hat{p} \pm \left(\ell \times \sqrt{\frac{p(1-p)}{n}}\right)$$

- ► What is ℓ? [for 95%, ℓ = 1.96; for 99%, ℓ = 2.58]
- A good approximation:

$$\hat{p} \pm \left(\ell \times \sqrt{rac{\hat{p}(1-\hat{p})}{n}}
ight)$$

э

・ロット (雪) (日) (日)

An example

- A market survey organization took a simple random sample of 500 households in a certain town with 25,000 households: 79 of the sampled households had computers. Is it possible to find a 95% CI for the percentage of all 25,000 households with computers?
 - You bet it is possible!

SE:

$$\mathsf{SE} pprox \sqrt{rac{\hat{p}(1-\hat{p})}{n}} pprox 0.0163$$

95% CI for p:

 $0.158 \pm (1.96 \times 0.0163) = 0.158 \pm 0.031948$

p is somewhere between 0.126 = 12.6% and 0.19 = 19% [95% confidence = ????]

An example # 7.7, p. 321

- ▶ 1998 data: "Do you believe in heaven"? [*n* = 1158]
- ▶ p̂ = 0.86 [proportion of "yes."]

SE:

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.86 \times (1-0.86)}{1158}} \approx 0.0102.$$

95% CI for the proportion of "yes" for "heaven"

 $\hat{p} \pm (1.96 imes SE) pprox 0.86 \pm (1.96 imes 0.0102) pprox 0.84$ to 0.88.

- What does this mean?
- Aside: "MOE" here is $1.96 \times 0.0102 \approx 0.02$.

Confidence intervals at large

General philosophy:

Confidence interval = point estimate \pm margin of error

Example: For proportions [at 95%]

Confidence interval =
$$\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

"Therefore": For means [at 95%]

Confidence interval =
$$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

"Therefore": For means with σ unknown but n large [at 95%]

Confidence interval =
$$\bar{x} \pm 1.96 \frac{s}{\sqrt{r}}$$

э

・ロン ・雪 と ・ ヨ と ・ ヨ と

An example Example 6, pp. 334–335

- Recent GSS [General Social Survey]: "On the average day, about how many hours do you personally watch television?"
- Some results (MINITAB):

Variable	n	mean	SD	SE mean	95% CI
TV	905	2.983	2.361	0.0785	(2.83, 3.14)

- Some questions:
 - What do the sample mean and SD suggest about the shape of the population distribution?
 - How did the software compute stadard error? What does it mean?
 - Interpret the 95% CI reported by the software.

An example

#7.25, p. 343

- 2002 GSS: "What do you think is he ideal number of children for a family to have?"
- 497 women responded; median = 2; mean = 3.02; SD = 1.81
- Point estimate of the population mean = ?
 - 3.02
- SE mean = ?
 - ▶ 1.81/√497 ≈ 0.0811
- 95% CI for the mean = ?
 - ► 3.02 ± (1.96 × 0.0811) = (2.86, 3.17) [Note the text's discrepancy]
- Is it plausible that $\mu = 2?$
 - No [95% sure]

CI's for means via the *t*-distribution

• The problem: Find a CI for μ , as before:

Confidence interval =
$$\bar{\mathbf{x}} \pm \left(\mathbf{z} \times \frac{\sigma}{\sqrt{n}} \right)$$

If σ unknown but n large, then σ ≈ s with very high probab.
 Therefore,

Confidence interval =
$$\bar{x} \pm \left(z \times \frac{s}{\sqrt{n}}\right)$$

- If n small, then hopeless in general ... except
- If the underlying population is normal, then

95% confidence interval =
$$\bar{x} \pm \left(t_{0.025} \times \frac{s}{\sqrt{n}} \right)$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

The *t*-distribution

- ► The "t-distribution with (n 1) degrees of freedom [df]" looks like the normal distribution
- It is not a normal distribution, though
- Tabulated in Table B [A3 in Appendix A]

The [Student's] t-distribution was found by William S. Gosset [1876–1937; aka "Student"] in 1908

Brewing Company in Dublin

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

The *t*-table

	Confidence Level										
	80%	90%	95%	98%	99%	99.8%					
	Right-Tail Probability										
đf	¢.100	t.aso	Lozs	\$.010	¢.005	\$.eo1					
1	3.078	6.314	12.706	31.821	63.656	318.289					
2	1.886	2.920	4.303	6.965	9.925	22.328					
3	1.638	2.353	3.182	4.541	5.841	10.214					
4	1.533	2.132	2.776	3.747	4.604	7.173					
5	1.476	2.015	2.571	3.365	4.032	5.B94					
6	1.440	1.943	2.447	3.143	3.707	5.20B					
7	1.415	1.895	2.365	2.998	3.499	4.785					
8	1.397	1.860	2.306	2.896	3.355	4.501					
9	1.383	1.833	2.262	2.821	3.250	4.297					
10	1.372	1.812	2.228	2.764	3.169	4.144					
11	1,363	1.796	2.201	2.718	3.106	4.025					
12	1.356	1.782	2.179	2.681	3.055	3.930					
13	1.350	1.771	2.160	2.650	3.012	3.852					
14	1.345	1.761	2.145	2.624	2.977	3.787					
15	1.341	1.753	2.131	2.602	2.947	3.733					
16	1.337	1.746	2.120	2.583	2.921	3.686					
17	1.333	1.740	2.110	2.567	2.898	3.646					
18	1.330	1.734	2.101	2.552	2.878	3.611					
19	1.328	1.729	2.093	2.539	2.861	3.579					
20	1.325	1.725	2.086	2.528	2.845	3.552					
21	1.323	1.721	2.080	2.518	2.831	3.527					
22	1.321	1.717	2.074	2.50B	2.819	3.505					
23	1.319	1.714	2.069	2.500	2.807	3.485					
24	1.318	1.711	2.064	2.492	2.797	3.467					
25	1.316	1.708	2.060	2.485	2.787	3.450					
26	1.315	1.706	2.056	2.479	2.779	3.435					
27	1.314	1.703	2.052	2.473	2.771	3.421					
28	1.313	1.701	2.048	2.467	2.763	3.408					
29	1.311	1.699	2.045	2.462	2.756	3.396					
30	1.310	1.697	2.042	2.457	2.750	3.385					
40	1.303	1.684	2.021	2.423	2.704	3.307					
50	1.299	1.676	2.009	2.403	2.678	3.261					
60	1.296	1.671	2.000	2.390	2.660	3.232					
80	1.292	1.664	1.990	2.374	2.639	3.195					
100	1.290	1.660	1.984	2.364	2.620	3.174					
.00	1 282	1.645	1.960	2.326	2.57	3.091					

Examples

For a 95% CI:

- If n = 3, then df = 2 and t_{0.025} = 4.303 [≫ 1.96]
- If n = 10, then df = 9 and t − 0.025 = 2.262 [> 1.96]
- ▶ If n = 50, then df = 49 ≈ 50 and $t_{0.025} = 2.009$ [> 1.96]
- ▶ If n = 99, then df = 98 ≈ 100 and $t_{0.025} = 1.984$ [≈ 1.96]
- What is going on?
- What if we want a 99% CI, say?
- ▶ Ans: Find *t*_{0.005}.

イロト 不良 とくほ とくほう 二日

An example #7.6, p. 321

- Starting salary for n = 3 recent math. grads from NCSU
- Data: 45K, 35K, and 55K
- Point estimate for the mean starting salary of all recent math. grads from NCSU: (45 + 35 + 55)/3 = 45K
- SD of data = 10K
- If salaries are \approx normal, then a 95% CI is [df = 2]

$$CI = 45 \pm \left(t_{0.025} \frac{s}{\sqrt{n}} \right) = 45 \pm \left(4.303 \times \frac{10}{\sqrt{3}} \right) \approx (20.16, 69.8)$$

How reliable is the point estimate?

The normal assumption

- ► The *t*-confidence interval is valid exactly **only** when the underlying population is ≈ normal
- What if the underlying population is almost normal?
- Good news: The CI is "robust" under slight deviations from normality
- To check: plot the histogram, and think.
- Bad news: None of our methods are robust [or any good, for that matter] under "nonrandom" sampling
- Fact: If n is large, then the t-distribution is almost standard normal

Choosing the sample size

- Question: How big a sample size do we need in order to have a MOE of size m
- For proportions, the MOE for a 95% CI [for p] is

$$m=1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

provided that n is large

I.e.,

$$m^2 = 3.8416 imes \left(rac{\hat{p}(1-\hat{p})}{n}
ight)$$

Solve:

$$n=3.8416 imes\left(rac{\hat{p}(1-\hat{p})}{m^2}
ight).$$

 General formula [p. 348], but you are expected to do this on your own in the final exam

Choosing the sample size

For means, the MOE for a 95% CI [for p] is

$$m = 1.96 \frac{\sigma}{\sqrt{n}}$$

provided that n is large

► I.e.,

$$m^2 = 3.8416 imes \left(rac{\sigma^2}{n}
ight)$$

Solve:

$$n = 3.8416 imes \left(rac{\sigma^2}{m^2}
ight)$$

- If this *n* is large and σ is not known, then $s \approx \sigma$
- General formula [p. 349], but you are expected to do this on your own in the final exam

э

・ ロ ト ・ 雪 ト ・ 目 ト ・