Math 1070-2: Spring 2008 Lecture 6

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

February 20, 2008

Probability distributions

- Recall that a probability distribution is a table of possible values versus their probabilities
- Example:

value	1	2	3	4	5	6
probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- The shape is flat.

Rolling one die

- Sample space $=\{1,2, \ldots, 6\}$ (all equally likely)
- Possible values = 1, 2, 3, 4, 5, 6
- Resp. probab. $=\frac{1}{6}$ each

Rolling two dice

- Sample space $=\{(1,1), \ldots,(6,6)\}$ (all equally likely)
- Possible values $=2,3,4,5,6,7,8,9,10,11,12$
- Resp. probab. $=\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}$

Rolling three dice

The mean/SD of a probability distribution

- Recall: The mean is $\mu=\sum x P(x)$
- E.g., one die: the expected number of dots is

$$
\left(1 \times \frac{1}{6}\right)+\cdots+\left(6 \times \frac{1}{6}\right)=3.5
$$

- There is also a notion of SD (σ) which measures the average deviation from μ in the population

The normal distribution

- Two parameters $\mu=$ the mean; $\sigma=$ st. dev.

- How? Why?

The standard normal table (page 1)

The general normal table

- General fact: If you change x to SUs then you do not alter the probabilities
- I.e., the probability of being z SDs above [or below] the mean does not depend on μ or σ
- Only true for normal distributions!!!!!
- "Formula":

$$
\text { height at } x=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

A blackboard example (SATs)

- SAT scores \approx normal with $\mu=500$ and $\mathrm{SD}=100$
- If your score is $x=650$ then

$$
z=\frac{x-\mu}{\sigma}=\frac{650-500}{100}=1.5
$$

-What is the percentage of scores less than yours? (this $\times 100 \%$ is your score's percentile)

- draw a picture!
- Ans $=(1-0.0668) \times 100 \% \approx 93.3 \%$

Basic normal probab.s

- Blackboard computations (draw pictures!)

The binomial distribution

- n independent trials
- each leads to two possible outcomes (success/failure, man/woman, smoker/nonsmoker, ...)
- Each trial has the same chance p of leading to a success
- Probab. of getting x successes is exactly:

$$
\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1, \ldots, n
$$

- $z!=z$ factorial $=z \times(z-1) \times(z-2) \times \cdots \times 2 \times 1$
- $0!=1$

The binomial distribution (Example)

- Roughly half of a large population is men $p=\frac{1}{2}=0.5$
- Sample 10 people independently ($n=10$)
- Find probab. of no women in the sample
- Probab. of getting x women is exactly:

$$
\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1, \ldots, n
$$

- Set $n=10, p=0.5$, and $x=0$ to find that

$$
\text { probab. no women }=\frac{10!}{0!\times(10-0)!} 0.5^{0}(1-0.5)^{10-0}=0.001
$$

Facts about binomials

- $\mu=n p$
- $\sigma=\sqrt{n p(1-p)}$
- In the previous example ($n=10, p=0.5$) of women vs men,
$\mu=10 \times 0.5=5$ women and $\sigma=\sqrt{10 \times 0.5 \times(1-0.5)} \approx 1.5$
- Deep fact: If n is large then binomial (n, p) probab.s are close to those of a normal with $\mu=n p$ and $\sigma=\sqrt{n p(1-p)}$

Example (racial profiling)

- 1990s: US Justice Dept, ACLU, etc. studied possible abuse by Philadelphia PD's treatment of minorities
- Results of 262 ($n=262$) police-car stops during a certain week in 1997:
207 (79%) of the drivers were African American
- Is this unusual?
- Suppose the percentage of African Americans in Philly in $1997 \approx$ that in the US $(42.2 \% ; p=0.422)$
- If no profiling, then the no. of African Amercians in the sample is binomial with $n=262$ and $p=0.422$ Model?)

Example (racial profiling; continued)

- $\mu=262 \times 0.422 \approx 110.563$
- $\sigma=\sqrt{262 \times 0.422(1-0.422)} \approx 7.99$
- If $x=207$ then $z=(x-110.563) / 7.99 \approx 12$
- Interpret using a normal table
- One possible limitation of this analysis: Were 42.2% of all possible stops African Americans?

