### Math 1070-2: Spring 2008 Lecture 6

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

February 20, 2008



ъ

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

# **Probability distributions**

- Recall that a probability distribution is a table of possible values versus their probabilities
- Example:

| value       | 1             | 2             | 3             | 4             | 5             | 6             |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|
| probability | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

The shape is flat.



э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

### Rolling one die

- ► Sample space = {1,2,...,6} (all equally likely)
- Possible values = 1, 2, 3, 4, 5, 6
- Resp. probab. =  $\frac{1}{6}$  each





A B > A B >

-

#### Rolling two dice

- Sample space = {(1,1),...,(6,6)} (all equally likely)
- Possible values = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- ► Resp. probab. =  $\frac{1}{36}$ ,  $\frac{2}{36}$ ,  $\frac{3}{36}$ ,  $\frac{4}{36}$ ,  $\frac{5}{36}$ ,  $\frac{6}{36}$ ,  $\frac{5}{36}$ ,  $\frac{4}{36}$ ,  $\frac{3}{36}$ ,  $\frac{2}{36}$ ,  $\frac{1}{36}$





イロト イ理ト イヨト イヨト

## Rolling three dice





æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

## The mean/SD of a probability distribution

- Recall: The mean is  $\mu = \sum x P(x)$
- E.g., one die: the expected number of dots is

$$\left(1 \times \frac{1}{6}\right) + \dots + \left(6 \times \frac{1}{6}\right) = 3.5$$

There is also a notion of SD (σ) which measures the average deviation from μ in the population



э

・ ロ ト ・ 雪 ト ・ 目 ト ・

## The normal distribution

• Two parameters  $\mu$  = the mean;  $\sigma$  = st. dev.



How? Why?



э

・ロト ・ 同ト ・ ヨト ・ ヨト

## The standard normal table (page 1)

|     | The second second |         | 101010 |         |        | ALC: NO. | 11010       |           |              | 111161      | 1000000         | a second |  |
|-----|-------------------|---------|--------|---------|--------|----------|-------------|-----------|--------------|-------------|-----------------|----------|--|
|     |                   |         | _      | 0       |        |          |             |           |              |             |                 |          |  |
|     |                   | Probabi | lity , | / `     | 1      |          |             |           |              |             |                 |          |  |
|     |                   |         | 7/     |         | 1      |          | Curren data | e probabi | the for a la | the scene i | order the       |          |  |
|     |                   |         | ~      |         | /      | _        |             | normal cu |              |             |                 |          |  |
|     |                   |         |        |         |        |          |             |           |              |             |                 |          |  |
|     |                   | TAR     |        | bachard | Normal | Cumul    | ative Pr    | obabilit  | les.         | 1005170     | CALLON MARCHINE |          |  |
|     |                   | 2       | .00    | .01     | .02    | .03      | .04         | .05       | .06          | .07         | .08             | .07      |  |
|     | .00               | -       |        |         |        |          |             |           |              |             |                 |          |  |
| 0   | .000000287        | -3.4    | .0003  | .0003   | .0003  | .0003    | .0003       | .0003     | .0003        | .0003       | .0003           | .0002    |  |
| 5   | .00000340         | -3.3    | .0005  | .0005   | .0005  | .0004    | .0004       | .0004     | .0004        | .0004       | .0004           | .0003    |  |
| 1.0 | .0000317          | -3.2    | .0007  | .0007   | .0006  | .0006    | .0006       | .0005     | .0006        | .0005       | .0005           | .0005    |  |
|     |                   | -3.1    | .0010  | .0009   | .0009  | .0009    | .0008       | .0008     | .0008        | .0008       | .0007           | .0007    |  |
|     |                   | -3.0    | .0013  | .0013   | .0013  | .0012    | .0012       | .0011     | .0011        | .0011       | .0010           | .0010    |  |
|     |                   | -2.9    | .0019  | .0018   | .0018  | .0017    | .0016       | .0016     | .0015        | .0015       | .0014           | .0014    |  |
|     |                   | -2.8    | .0026  | .0025   | .0024  | .0023    | .0023       | .0022     | .0021        | .0021       | .0020           | .0019    |  |
|     |                   | -2.7    | .0035  | .0034   | .0033  | .0032    | .0031       | .0030     | .0029        | .0028       | .0027           | .0026    |  |
|     |                   | -2.6    | .0047  | .0045   | .0044  | .0043    | .0041       | .0040     | .0039        | .0038       | .0037           | .0036    |  |
|     |                   | -2.5    | .0062  | .0060   | .0059  | .0057    | .0055       | .0054     | .0052        | .0051       | .0049           | .0048    |  |
|     |                   | -2.4    | .0082  | .0080   | .0078  | .0075    | .0073       | .0071     | .0069        | .0068       | .0066           | .0064    |  |
|     |                   | -2.1    | .0107  | .0104   | .0102  | .0099    | .0096       | .0094     | .0091        | .0089       | .0087           | .0084    |  |
|     |                   | -2.2    | .0139  | .0136   | .0132  | .0129    | .0125       | .0122     | .0119        | .0116       | .0113           | .0110    |  |
|     |                   | -2.1    | .0179  | .0174   | .0170  | .0166    | .0162       | .0158     | .0154        | .0150       | .0146           | .0143    |  |
|     |                   | -2.0    | .0228  | .0222   | .0217  | .0212    | .0207       | .0202     | .0197        | .0192       | .0188           | .0183    |  |
|     |                   | -1.9    | .0287  | .0281   | .0274  | .0268    | .0262       | .0256     | .0250        | .0244       | .0239           | .0233    |  |
|     |                   | -1.8    | .0359  | .0351   | .0344  | .0336    | .0329       | .0322     | .0314        | .0307       | .0301           | .0294    |  |
|     |                   | -1.7    | .0446  | .0436   | .0427  | .0418    | .0409       | .0401     | .0392        | 0384        | .0375           | .0367    |  |
|     |                   | -1.6    | .0548  | .0537   | .0526  | .0516    | .0505       | .0495     | .0485        | .0475       | .0465           | .0455    |  |
|     |                   | -1.5    | .0668  | .0655   | .0643  | .0630    | .0618       | .0606     | .0594        | .0582       | .0571           | .0559    |  |
|     |                   | -14     | .0808  | .0793   | 0778   | .0764    | .0749       | .0735     | .0721        | .0708       | .0694           | .0681    |  |
|     |                   | -13     | .0968  | .0951   | .0934  | .0918    | .0901       | .0885     | .0869        | .0853       | .0838           | .0823    |  |
|     |                   | -1.2    | .1151  | .1131   | .1112  | .1093    | .1075       | .1056     | .1038        | .1020       | .1003           | .0985    |  |
|     |                   | -1.1    | .1357  | .1335   | .1314  | .1292    | .1271       | .1251     | .1230        | .1210       | .1190           | .1170    |  |
|     |                   | -1.0    | .1587  | .1562   | .1539  | .1515    | .1492       | .1469     | .1446        | .1423       | .1401           | .1379    |  |
|     |                   | -0.9    | .1587  | .1302   | .1337  | .1762    | .1736       | .1711     | .1685        | .1660       | .1635           | .1611    |  |
|     |                   |         |        |         | .1788  | 2033     | 2005        | .1977     | .1949        | .1922       | 1894            | .1867    |  |
|     |                   | -0.8    | .2119  | .2090   |        | .2033    | .2005       | .19//     | .1949        | .1922       | 2177            | .1007    |  |
|     |                   | -0.7    | .2420  | .2389   | .2358  |          |             |           |              | .2514       | .2483           | .2451    |  |
|     |                   | -0.6    | .2743  | .2709   | .2676  | .2643    | .2611       | .2578     | .2546        | .2514       | .2483           | .2451    |  |
|     |                   | -0.5    | .3085  | .3050   | .3015  | .2981    | .2946       | .2912     | .2877        |             |                 | .3121    |  |
|     |                   | -0.4    | .3446  | .3409   | .3372  | .3336    | .3300       | .3264     | .3228        | .3192       | .3156           |          |  |
|     |                   | -0.3    | .3821  | .3783   | .3745  | .3707    | .3669       | .3632     | .3594        | .3557       | .3520           | .3483    |  |
|     |                   | -0.2    | .4207  | .4168   | .4129  | .4090    | .4052       | .4013     | .3974        | .3936       | .3897           | .3859    |  |
|     |                   | -0.1    | .4602  | .4562   | .4522  | .4483    | .4443       | .4404     | .4364        | .4325       | .4286           | .4247    |  |
|     |                   | -0.0    | .5000  | .4960   | ,4920  | .4880    | .4840       | .4801     | .4761        |             |                 | .4641    |  |

٢

æ

AI

#### The general normal table

- General fact: If you change x to SUs then you do not alter the probabilities
- I.e., the probability of being z SDs above [or below] the mean does not depend on μ or σ
- Only true for normal distributions!!!!!
- "Formula":

height at 
$$x = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$



э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

## A blackboard example (SATs)

- SAT scores  $\approx$  normal with  $\mu =$  500 and SD= 100
- If your score is x = 650 then

$$z = \frac{x - \mu}{\sigma} = \frac{650 - 500}{100} = 1.5.$$

- What is the percentage of scores less than yours? (this ×100% is your score's percentile)
- draw a picture!
- ► Ans = (1 0.0668) × 100% ≈ 93.3%



イロト 不良 とくほ とくほう 二日

## Basic normal probab.s



Blackboard computations (draw pictures!)



(日)

### The binomial distribution

- n independent trials
- each leads to two possible outcomes (success/failure, man/woman, smoker/nonsmoker, ...)
- Each trial has the same chance p of leading to a success
- Probab. of getting x successes is exactly:

$$\frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \text{ for } x = 0, 1, \dots, n$$

*z*! = *z* factorial = *z* × (*z* − 1) × (*z* − 2) × · · · × 2 × 1
 0! = 1



## The binomial distribution (Example)

- Roughly half of a large population is men  $p = \frac{1}{2} = 0.5$
- Sample 10 people independently (n=10)
- Find probab. of no women in the sample
- Probab. of getting x women is exactly:

$$\frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \text{ for } x = 0, 1, \dots, n$$

Set n = 10, p = 0.5, and x = 0 to find that

probab. no women = 
$$\frac{10!}{0! \times (10-0)!} 0.5^0 (1-0.5)^{10-0} = 0.001$$



#### Facts about binomials

•  $\sigma = \sqrt{np(1-p)}$ 

In the previous example (n = 10, p = 0.5) of women vs men,

$$\mu$$
 = 10 × 0.5 = 5 women and  $\sigma$  =  $\sqrt{10 \times 0.5 \times (1 - 0.5)} \approx$  1.5

▶ Deep fact: If *n* is large then binomial (n, p) probab.s are close to those of a normal with  $\mu = np$  and  $\sigma = \sqrt{np(1-p)}$ 



## Example (racial profiling)

- 1990s: US Justice Dept, ACLU, etc. studied possible abuse by Philadelphia PD's treatment of minorities
- Results of 262 (n = 262) police-car stops during a certain week in 1997:
   207 (79%) of the drivers were African American
- Is this unusual?
- Suppose the percentage of African Americans in Philly in 1997 ≈ that in the US (42.2%; p = 0.422)
- If no profiling, then the no. of African Amercians in the sample is binomial with n = 262 and p = 0.422 (Why? Model?)



## Example (racial profiling; continued)

- $\mu = 262 \times 0.422 \approx 110.563$
- $\sigma = \sqrt{262 \times 0.422(1 0.422)} \approx 7.99$
- If x = 207 then  $z = (x 110.563)/7.99 \approx 12$
- Interpret using a normal table
- One possible limitation of this analysis: Were 42.2% of all possible stops African Americans?



э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・