Math 1070-2: Spring 2008 Lecture 5

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

February 6, 2008

Randomness

- Simulations of a fair coin (1 = heads; $0=$ tails)
- 0000110011
- 1110111000
- 0100001100
- 0000011010
- 1000001000
- 1000100011
- 1010000011
- 0111101110
- 0011010110
[0.4=40\%]
[0.6=60\%]
[0.3=30\%]
[0.3=30\%]
[0.3=30\%]
[0.4=40\%]
[0.4=40\%]
[0.7=70\%]
[0.5=50\%]
- Is this random? Is this a fair coin?

Randomness

- Toss N fair coins; tally the proportion of heads
- Long-run pattern

Probability

- Assignment of likelihood
- Usually has a long-run interpretation [Law of large numbers; J. Bernoulli, 1689]
- Probability of heads in a toss of a fair coin
- Probability of rolling two dots in a roll of a fair die
- Probability of rain tomorrow (??)
- Probability that candidate X wins the next election (??????)

Equally-likely outcomes

- Example to have in mind: Toss a fair coin 3 times. What is the probability of getting 2 heads?
- To compute probabilities of equally likely events:
- Produce [usually in your head] a "sample space" [this is a list of all possible outcomes of the experiment]
- Here, we could choose:

TTT TTH THT THH
HHH HHT HTH HTT

- Each element of the sample space is equally likely [there are other possibilities; this is good enough for us]
- Prob=\# ways to get the outcome we want /total \# possible outcomes
- Here,

$$
P(\text { two heads })=\frac{3}{8}=0.375=37.5 \%
$$

Equally-likely outcomes

- Had the following sample space:

TTT TTH THT THH HHH HHT HTH HTT

$$
P(\text { two heads })=\frac{3}{8}
$$

- What if we wrote the sample space unordered? TTT TTH THH HHH
$P($ two heads $)=\frac{1}{4}$
- These can't both be right. What is going on?

Independence

- Events A and B are independent if:
- $P(B)$ is the same as the probability of B if you were told A
- Consider our old sample space TTT TTH THT THH HHH HHT HTH HTT
- Let A be the event first coin-toss is heads
- Let B be the event third coin-toss is tails
- Are A and B independent?
- The probability of B is $P(B)=\frac{4}{8}=\frac{1}{2}$
- If you knew A then the sample space is reduced to HHH HHT HTH HTT
- The [conditional] probability of B [given A] in this case is $P(B \mid A)=\frac{2}{4}=\frac{1}{2}$
- Yes! A and B are independent
- Two draws from a deck of cards. Are the draws independent?

Independence

- A precise mathematical definition:
- A and B are independent if

$$
P(A \& B)=P(A) P(B)
$$

- A more-or-less honest verbal definition:
- A and B are independent if these outcomes don't affect each other [statistically speaking, whatever that means]

Independence and sampling

- Sampling with replacement \rightarrow independent draws
- Sampling without replacement \rightarrow draws that are not independent
- If the population is large then both sampling methods \rightarrow independent draws

Random variables and distributions

- Arandom variable is the as-yet unseen outcome of a random experiment
- Its distribution is a list of two quantities:
- Possible values
- Versus probabilities
- There are also "continuous" random variables [later]

Example: A die

possible value	probability
1	$1 / 6 \approx 0.17$
2	$1 / 6 \approx 0.17$
3	$1 / 6 \approx 0.17$
4	$1 / 6 \approx 0.17$
5	$1 / 6 \approx 0.17$
6	$1 / 6 \approx 0.17$
	sum $=1$

Example: \# of homeruns in a game for the Red Sox ("based on 2004 data")

possible value	probability
0	0.23
1	0.38
2	0.22
3	0.13
4	0.03
5	0.01
6 or more	0.00
	sum $=1$

- What does this mean? How is it computed?

The mean (expectation) of a probability distribution

- A box has 3 ones and 2 threes. The average value in the box is

$$
\frac{1+1+1+3+3}{5}=\frac{9}{5}=(1 \times \underbrace{\frac{3}{5}}_{P(1)})+(3 \times \underbrace{\frac{2}{5}}_{P(3)})
$$

- $\frac{9}{5}=1.8$ is our best guess for the outcome of this draw [before it happens]
- General formula:

$$
\mu=\sum_{x=\text { possible values }} x P(x)
$$

Example: A die

possible value	probability
1	$1 / 6 \approx 0.17$
2	$1 / 6 \approx 0.17$
3	$1 / 6 \approx 0.17$
4	$1 / 6 \approx 0.17$
5	$1 / 6 \approx 0.17$
6	$1 / 6 \approx 0.17$
	sum $=1$
$\mu=\left(1 \times \frac{1}{6}\right)+\left(2 \times \frac{1}{6}\right)+\cdots+\left(6 \times \frac{1}{6}\right)=3.5$	

- Does this make a good guess? For what? And how?

Example: \# of homeruns in a game for the Red Sox ("based on 2004 data")

possible value	probability
0	0.23
1	0.38
2	0.22
3	0.13
4	0.03
5	0.01
6 or more	0.00
	sum $=1$

$$
\mu=(0 \times 0.23)+(1 \times 0.38)+(2 \times 0.22)+\cdots+(5 \times 0.01) \approx 1.38
$$

Law of large numbers (again)

- General fact: Take a large independent sample from a population, and consider a random variable that one would obtain in this way [e.g., weight]
- Then the sample average [e.g., sample weight] is close to the mean of the probab. distribution of the random variable[e.g., true average weight of the population]
- As the sample size $\rightarrow \infty$ this approximation gets better, with increasingly improved probabilities

Expectations and taking bets

- We all take bets in different settings. Expectations show us how to do this well.
- Lottery: Costs $\$ 1$; win $\$ 0$ with probab. $\frac{99,999}{100,000}$; win $\$ 10,000$ with probab. $\frac{1}{100,000}$
expected win $=\left(0 \times \frac{99999}{100000}\right)+\left(10000 \times \frac{1}{100000}\right)-1=-0.9$
- Lottery $1 \rightarrow$ expect to lose 90 $¢$
- Long-run interpretation?

