Math 1070-2: Spring 2008 Lecture 5

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

February 6, 2008

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Randomness

Simulations of a fair coin (1 = heads; 0 = tails)

- 0000110011
- 1110111000
- 0100001100
- 0000011010
- 1000001000
- 1000100011
- 1010000011
- 0111101110
- 0011010110
- Is this random? Is this a fair coin?

[0.4=40%] [0.6=60%] [0.3=30%] [0.3=30%] [0.4=40%] [0.4=40%] [0.7=70%] [0.5=50%]

Randomness

- Toss N fair coins; tally the proportion of heads
- Long-run pattern

Ν

・ ロ ト ・ 一 マ ト ・ 日 ト

- - E - b

Probability

Assignment of likelihood

Usually has a long-run interpretation [Law of large numbers; J. Bernoulli, 1689]

- Probability of heads in a toss of a fair coin
- Probability of rolling two dots in a roll of a fair die
- Probability of rain tomorrow (??)
- Probability that candidate X wins the next election (?????)

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Equally-likely outcomes

- Example to have in mind: Toss a fair coin 3 times. What is the probability of getting 2 heads?
- To compute probabilities of equally likely events:
 - Produce [usually in your head] a "sample space" [this is a list of all possible outcomes of the experiment]
 - Here, we could choose:
 TTT TTH THT THH
 HHH HHT HTH HTT
 - Each element of the sample space is equally likely [there are other possibilities; this is good enough for us]
 - Prob=# ways to get the outcome we want /total # possible outcomes
 - Here,

$$P(\text{two heads}) = \frac{3}{8} = 0.375 = 37.5\%$$

э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Equally-likely outcomes

- Had the following sample space: TTT TTH THT THH HHH HHT HTH HTT
 P(two heads) = ³/₈
- ► What if we wrote the sample space unordered? TTT TTH THH HHH $P(\text{two heads}) = \frac{1}{4}$
- These can't both be right. What is going on?

3

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Independence

- Events A and B are independent if:
 - P(B) is the same as the probability of B if you were told A
 - Consider our old sample space
 TTT TTH THT THH HHH HHT HTH HTT
 - Let A be the event first coin-toss is heads
 - Let B be the event third coin-toss is tails
 - Are A and B independent?
 - The probability of *B* is $P(B) = \frac{4}{8} = \frac{1}{2}$
 - If you knew A then the sample space is reduced to HHH HHT HTH HTT
 - ► The [conditional] probability of *B* [given *A*] in this case is $P(B|A) = \frac{2}{4} = \frac{1}{2}$
 - Yes! A and B are independent
- Two draws from a deck of cards. Are the draws independent?

- A precise mathematical definition:
 - A and B are independent if

$$P(A\&B) = P(A)P(B)$$

- A more-or-less honest verbal definition:
 - A and B are independent if these outcomes don't affect each other [statistically speaking, whatever that means]

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Independence and sampling

- ► Sampling with replacement → independent draws
- Sampling without replacement → draws that are not independent
- ► If the population is large then both sampling methods → independent draws

э

・ ロ ト ・ 雪 ト ・ 目 ト ・

Random variables and distributions

A random variable is the as-yet unseen outcome of a random experiment

Its distribution is a list of two quantities:

- Possible values
- Versus probabilities

There are also "continuous" random variables [later]

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Example: A die

possible value	probability
1	$1/6 \approx 0.17$
2	$1/6 \approx 0.17$
3	$1/6 \approx 0.17$
4	$1/6 \approx 0.17$
5	$1/6 \approx 0.17$
6	$1/6 \approx 0.17$
	sum =1

ヘロン 人間 とくほど 人ほど 一日

Example: # of homeruns in a game for the Red Sox ("based on 2004 data")

possible value	probability
0	0.23
1	0.38
2	0.22
3	0.13
4	0.03
5	0.01
6 or more	0.00
	sum =1

What does this mean? How is it computed?

ъ

ヘロト 人間 とくほとう ほとう

The mean (expectation) of a probability distribution

A box has 3 ones and 2 threes. The average value in the box is

$$\frac{1+1+1+3+3}{5} = \frac{9}{5} = \left(1 \times \underbrace{3}_{\overbrace{P(1)}}\right) + \left(3 \times \underbrace{2}_{\overbrace{P(3)}}\right)$$

- ▶ $\frac{9}{5} = 1.8$ is our best guess for the outcome of this draw [before it happens]
- General formula:

$$\mu = \sum_{\mathbf{x} = \text{possible values}} \mathbf{x} \mathbf{P}(\mathbf{x})$$

3

Example: A die

possible value	probability	
1	$1/6 \approx 0.17$	
2	$1/6 \approx 0.17$	
3	$1/6 \approx 0.17$	
4	$1/6 \approx 0.17$	
5	$1/6 \approx 0.17$	
6	$1/6 \approx 0.17$	
	sum =1	
$\mu = \left(1 imes rac{1}{6} ight) + \left(2 imes rac{1}{6} ight) + \dots + \left(6 imes rac{1}{6} ight) = 3.5$		

Does this make a good guess? For what? And how?

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Example: # of homeruns in a game for the Red Sox ("based on 2004 data")

possible value	probability
0	0.23
1	0.38
2	0.22
3	0.13
4	0.03
5	0.01
6 or more	0.00
	sum =1

 $\mu = (0 \times 0.23) + (1 \times 0.38) + (2 \times 0.22) + \dots + (5 \times 0.01) \approx 1.38$

э

・ロット 御マ キョマ キョン

Law of large numbers (again)

- General fact: Take a large independent sample from a population, and consider a random variable that one would obtain in this way [e.g., weight]
- Then the sample average [e.g., sample weight] is [with high probab.] close to the mean of the probab. distribution of the random variable[e.g., true average weight of the population]
- \blacktriangleright As the sample size $\rightarrow \infty$ this approximation gets better, with increasingly improved probabilities

Expectations and taking bets

- We all take bets in different settings. Expectations show us how to do this well.
- Lottery: Costs \$1; win \$0 with probab. ^{99,999}/_{100,000}; win \$10,000 with probab. ¹/_{100,000}

expected win =
$$\left(0 \times \frac{99999}{100000}\right) + \left(10000 \times \frac{1}{100000}\right) - 1 = -0.9$$

- Lottery 1 \rightarrow expect to lose 90¢
- Long-run interpretation?

э

・ ロ ト ・ 雪 ト ・ 目 ト ・