Math 1070-2: Spring 2008 Lecture 3

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

January 23, 2009

Lines and plots

- Two numerical quantities: \boldsymbol{x} [e.g., year] and \boldsymbol{y} [e.g., income]
- Linear relationship:

$$
y=a+b x
$$

- Set $x=0 \rightarrow y=a$ [intercept]
- Set $y=0 \rightarrow x=-a / b$ [abscissa]
- Move from x to $x^{\prime}=x+\Delta \rightarrow$ move y to $y^{\prime}=a+b(x+\Delta)$
- \therefore a Δ-change $\left[x^{\prime}-x\right]$ in the x value yields a $y^{\prime}-y=b \Delta$-change in the y value
- $x^{\prime}-x=$ run; $y^{\prime}-y=$ rise
- $\therefore b=$ rise $/$ run

Recall correlation (r)

- $-1 \leq r \leq 1$
- $r_{x, y}=r_{y, x}$
- If $r \approx-1$ then strong negative association
- If $r \approx+1$ then strong positive association
- If $r \approx 0$ then no (or weak) linear association
- Example: (year vs. whooping cough) $r \approx-0.943$
- Example: (Single-parent-rate vs. murder rate) $r \approx 0.847$
- Example (College vs. unemployment rate) $r \approx-0.21$ ©

How did we calculate r ?

- Data type: x_{1}, \ldots, x_{n} (e.g., year); y_{1}, \ldots, y_{n} (e.g., no. of whooping-cough incidents)
- First standardize your data:
$\begin{array}{ll}-z_{x_{i}}=\left(x_{i}-\bar{x}\right) / \mathrm{SD}_{x} & \text { (} x_{i} \text { in standard units) } \\ \text { - } z_{y_{i}}=\left(y_{i}-\bar{y}\right) / \mathrm{SD}_{y} & \text { (} y_{i} \text { in standard units) }\end{array}$
- Then you compute:

$$
r=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
$$

$\therefore r_{x, y}=r_{y, x}$

- Is it clear that $-1 \leq r \leq 1$?[Cauchy-Schwarz inequality]

[Simple] linear regression

- Two quantitative variables x [explanatory] and y [response]
- Sample: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Goal: Use the sample to find a "linear explanation" for y using x. That is, predict y with \hat{y}, where

$$
\hat{y}=a+b x
$$

is the line that best fits the sample.

Cigarettes vs death by bladder cancer

Prediction, the Next Goal

- Basic problem: Have two quantitative variables (e.g., $x=$ no. of cigarettes smoked (heads/capita) versus $y=$ deaths per 100K population from bladder cancer) Does x affect y ? How? Can we make predictions?
- Data from 1960 (by state)

Cigarettes vs death by bladder cancer

Prediction, the Next Goal

- $r \approx 0.7036219$

The principle of least squares (LS)

- Slanted line = proposed line of fit
- circles = data
- length of dotted lines = residuals
- Goal: choose the line that minimizes $\sum(\text { residuals })^{2}$

The regression formula

- LS Fact: One SU-change in x is predicted by r SU-changes in \hat{y}

$$
\frac{\hat{y}-\bar{y}}{\mathrm{SD}_{y}}=r\left(\frac{x-\bar{x}}{\mathrm{SD}_{x}}\right)
$$

- If $x=\bar{x}$ then $\hat{y}=\bar{y}$ (point of averages)
- We are not saying that

$$
\frac{y-\bar{y}}{\mathrm{SD}_{y}}=r\left(\frac{x-\bar{x}}{\mathrm{SD}_{x}}\right)
$$

- Can solve to obtain a formula:

$$
\hat{y}=\overbrace{\bar{y}-\frac{r \mathrm{SD}_{y}}{\mathrm{SD}_{x}}}^{a}+\overbrace{\frac{r \mathrm{SD}_{y}}{\mathrm{SD}_{x}} x}^{b} x
$$

To remember the regression formula

- Either: $\mathrm{SU}_{\hat{y}}=r \mathrm{SU}_{x}$; or
- The regression line:
- goes through (\bar{x}, \bar{y})—point of averages; and
- has slope $r\left(\mathrm{SD}_{y} / \mathrm{SD}_{x}\right)$
- I will use the first memorization method
- You may use either, as long as you do it correctly

Education vs income

An example

- 1993 education/income data for 426 CA women (25-29 y.o.):
- avg education ≈ 13 years; $S D \approx 3.1$ years
- avg income $\approx 17,500$ USD; SD $\approx 13,700$ USD
- $r \approx 0.34$
- $x=$ education in years; $y=$ income in USD $\times 1,000$ USD
- Regression equation:

$$
\frac{\hat{y}-17.5}{13.7}=0.34\left(\frac{x-13}{3.1}\right)
$$

- If $x=12$ years, then we predict income to be

$$
\frac{\hat{y}-17.5}{13.7}=0.34\left(\frac{12-13}{3.1}\right) \approx-0.1096774 \cdots \approx-0.1097
$$

- Solve: $\hat{y} \approx(-0.1097 \times 13.7)+17.5 \approx 15.997$ thousand USD

Femur length vs height

An example

- Goal: Given a found human femur (thighbone), predict the height
- Regression line: $\hat{y}=61.4+2.4 x[\mathrm{~cm}]$
- Do the units count?
- If we find a femur that is 50 cm , then we predict the height to be $\hat{y}=61.4+2.4(50)=181.4 \mathrm{~cm}$
- Is every person with a fifty-cm femur 181.4 cm tall?
- What does this prediction mean?
- Interpolation vs. extrapolation

Batting averages

An example

| TABLE 3.5: Team Batting Average and Team Scoring (Mean Number |
| :--- | :---: | :---: |
| of Runs Per Game) for American League Teams in 2003 |$|$| Batting Average | Team Scoring | |
| :--- | :---: | :---: |
| Team | .289 | 5.9 |
| Boston | .279 | 5.5 |
| Toronto | .277 | 4.9 |
| Minnesota | .274 | 5.2 |
| Kansas City | .271 | 4.9 |
| Seattle | .271 | 5.4 |
| New York | .268 | 4.5 |
| Anaheim | .268 | 4.6 |
| Baltimore | .266 | 5.1 |
| Texas | .265 | 4.4 |
| Tampa Bay | .263 | 4.9 |
| Chicago | .254 | 4.7 |
| Oakland | .254 | 4.3 |
| Cleveland | .240 | 3.6 |
| Detroit | | |

- $x=$ batting avg; $y=$ team score
- $\bar{x} \approx 0.267 ; \bar{y}=4.85$
- $\mathrm{SD}_{x} \approx 0.012 ; \mathrm{SD}_{y} \approx 0.575$
- $r \approx 0.874$

Batting averages

An example

- $\hat{y}=-6.1+41.2 x$
- If $x=0.278$ then $\hat{y}=-6.1+41.2(0.278) \approx 5.354$
- If $x=0.268$ then $\hat{y}=-6.1+41.2(0.268) \approx 4.9416$ [Baltimore? Anaheim?]

Extrapolation vs. interpolation

- (Interpolation) If $x=0.278$ then

$$
\hat{y}=-6.1+41.2(0.278) \approx 5.354
$$

- (Extrapolation) If $x=0.1$ then

$$
\hat{y}=-6.1+41.2(0.1) \approx-1.979
$$

- Extrapolate with care!!

Correlation vs causation

- Common error (a lot of firepersons at the scene \nrightarrow bigger fire)
- Can only determine causation by other methods; statistics might be used to corroborate
- One [serious] problem: Confounding [other, more important lurking variables]

Confounding
 An example

- Should women take hormones, such as estrogen, after menopause?
- 1992 conclusion: "yes," because women who took hormones reduced the risk of heart attacks by 30\% to 50\% [\gg risk of taking hormones]
- Women who chose to take hormones are different than those who didn't [richer; more educated; more frequent MD visits]
- 2002 conclusion: Hormones do not lower the risk
- The effect of the hormone(s) is confounded with the features of those who took hormones

