Math 1070-2: Spring 2008
 Lecture 2

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

January 16, 2009

Recap on Computational Matters

- Data: 1, 2, 3, 4, 5, 6, 7, 8, 9
- Average (or mean)

$$
\bar{x}=\frac{1+2+3+4+5+6+7+8+9}{9}=5
$$

- SD (standard deviation)

x	1	2	3	4	5	6	7	8	9
$x-\bar{x}$	-4	-3	-2	-1	0	1	2	3	4
$(x-\bar{x})^{2}$	16	9	4	1	0	1	4	9	16

- $\operatorname{sum}=16+9+4+1+0+1+4+9+16=60$
- $\mathrm{SD}=\sqrt{\operatorname{sum} /(n-1)}=\sqrt{60 / 8}=\sqrt{7.5} \approx 2.74$
- Typical number in data: 5 give or take 2.74

Association

Some Relevant Questions

- Does smoking cause cancer?
- Does more education mean less crime?
- Are newer drugs better than the older ones?
-
- Common theme: Look at "explanatory variables" to predict "response variables"
- Which is which in the previous three examples?

Scatterplots

The Defeat of Whooping Cough in the U.S.
$x[, 1]=y e a r$, $x[, 2]=c a s e s$, in the US

- Look for trends (1930-1940; 1940-1970)
- Negative association (strong? weak? linear relation?)

Murder Rates vs. College Education

Life is not always so simple (Discussion)

- x-axis = percentage of college-educated people in that state
- y-axis $=$ murder rate in that state

Murder Rates vs. Unemployment Rate

Discussion

- x-axis = percentage of unemployed people in that state
- y-axis $=$ murder rate in that state

Higher Ed vs. Unemployment Rate

Discussion

- x-axis = percentage of college-educated people in that state
- y-axis $=$ percentage of unemployed people in that state

Now Some Answers

Discussion

- x-axis = percentage of single parents in that state
- y-axis $=$ murder rate in that state

Understanding Correlation (r)

- $-1 \leq r \leq 1$
- If $r \approx-1$ then strong negative association
- If $r \approx+1$ then strong positive association
- If $r \approx 0$ then no (or weak) linear association
- Example: (year vs. whooping cough) $r \approx-0.943$
- Example: (Single-parent-rate vs. murder rate) $r \approx 0.847$
- Example (College vs. unemployment rate) $r \approx-0.21$

How Do We Calculate r?

- Data type: x_{1}, \ldots, x_{n} (e.g., year); y_{1}, \ldots, y_{n} (e.g., no. of whooping-cough incidents)
- First Standardize you data:
- $z_{x_{i}}=\left(x_{i}-\bar{x}\right) / \mathrm{SD}_{x} \quad\left(x_{i}\right.$ in standard units)
- $z_{y_{i}}=\left(y_{i}-\bar{y}\right) / \mathrm{SD}_{y} \quad\left(y_{i}\right.$ in standard units)
- Then you compute:

$$
r=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
$$

- Question: If $x_{1}=y_{1} \ldots x_{n}=y_{n}$, then what is r ?

Standard Units

- Recall $z_{x_{i}}=\left(x_{i}-\bar{x}\right) / \mathrm{SD}_{x}$.
- Example: $\bar{x}=5, \mathrm{SD}=2$
- $x=4$ is $(4-5) / 2=-0.5$ standard units
- Interpretation: 0.5 SD's below \bar{x} (verify)
- An advantage of thinking in standard units: They are absolute, unit-free numbers
- Not so helpful: I scored 10 points above average. (Out of how many points? How did others do? ©)
- More helpful: I scored 2 standard deviations above average

Cigarettes vs death by bladder cancer

Prediction, the Next Goal

- Basic problem: Have two quantitative variables (e.g., $x=$ no. of cigarettes smoked (heads/capita) versus $y=$ deaths per 100K population from bladder cancer) Does x affect y ? How? Can we make predictions?
- Data from 1960 (by state)

Cigarettes vs death by bladder cancer

Prediction, the Next Goal

- $r \approx 0.7036219$
- Want a line of fit (simple-but-good description/prediction)

Cigarettes vs death by bladder cancer

Prediction, the Next Goal

- $r \approx 0.7036219$
- Want a line of fit (simple-but-good description/prediction)

Lines and plots

Blackboard lecture

