Math 1070-2: Spring 2008
 Lecture 12

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

April 16, 2008

Reading from Chapter 9

- $\S 9.1$ [Cls \& testing for two proportions]
- $\S \mathbf{9 . 2}$ [Cls for the difference of two means; skip testing for the difference of two means]
- $\S 9.4$ [Cls \& testing for paired data]
- Skip: $\S 9.3$ and $\S 9.5$

Cl for the difference of two proportions (Recap)

- $95 \% \mathrm{Cl}$ for $p_{1}-p_{2}$
- Sample propotions: \hat{p}_{1} and \hat{p}_{2}
- Standard error

$$
\mathrm{SE}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

- Estimate the standard error

$$
\widehat{\mathrm{se}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

- $95 \% \mathrm{Cl}$ is $\hat{p}_{1}-\hat{p}_{2} \pm 1.96 \times \widehat{\text { se }}$
- What about other confidence intervals? Say, 99% ?

An example (aspirin vs heart disease)

Example 2 \& 3, pp. 427-429

- 5-year double-blind study; 22071 subjects who took aspirin/placebo every other day
- Results:

Group	Heart attack	No heart attack	Total
Placebo	189	10,845	11,034
Aspirin	104	10,933	11,037

- $p_{1}=$ proportion of heart attacks in the "placebo group"
- $p_{2}=$ proportion of heart attacks in the "aspirin group"
- $\hat{p}_{1}=189 / 11034 \approx 0.0171, \hat{p}_{2}=104 / 11037 \approx 0.0094$

An example (aspirin vs heart disease)

Example 2 \& 3, pp. 427-429, continued

- $p_{1}=$ proportion of heart attacks in the "placebo group"
- $p_{2}=$ proportion of heart attacks in the "aspirin group"
- $\hat{p}_{1} \approx 0.0171, \hat{p}_{2} \approx 0.0094$
- Standard error estimate

$$
\mathrm{SE}=\sqrt{\frac{0.0171(1-0.0171)}{11034}+\frac{0.0094(1-0.0094)}{11037}} \approx 0.0015
$$

- $95 \% \mathrm{Cl}$ for $p_{1}-p_{2}$:

- Meaning?

Testing for two proportions

- $H_{0}: p_{1}=p_{2}$ vs $H_{a}: p_{1} \neq p_{2}$
- Similar, but use the pooled SE:

$$
\mathrm{SE}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)},
$$

where \hat{p} denotes the pooled proportion.

- In the aspiring-versus-heart disease problem, \hat{p} is the total proportion of heart attacks; i.e.,

$$
\hat{p}=\frac{\overbrace{189+104}^{\text {total no of heart attacks }}}{\underbrace{11034+11037}_{\text {total size of study }}}=\frac{293}{22071} \approx 0.0133 .
$$

A testing example

Aspirin vs heart disease, the calculations

- $H_{0}: p_{1}=p_{2}$ vs $H_{a}: p_{1} \neq p_{2}$
- Pooled SE:

$$
\mathrm{SE}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

- $\hat{p} \approx 0.0133, n_{1}=11034, n_{2}=11037$
- pooled SE

$$
\approx \sqrt{0.0133(1-0.0133) \times\left(\frac{1}{11034}+\frac{1}{11037}\right)} \approx 0.00154
$$

- Therefore,

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\text { pooled SE }} \approx \frac{0.0171-0.0094}{0.00154}=5 \quad \rightarrow \quad P \text {-value } \approx 0
$$

A testing example

Aspirin vs heart disease, the report

1. Assumptions:

- Variables? Quant?
- Random sampling?
- Normality?

2. Hypotheses: $H_{0}: p_{1}=p_{2}$ vs $H_{a}: p_{1} \neq p_{2}$
3. Test statistic: $z \approx 5$
4. P-value: ≈ 0
5. Conclusion[s]?

Cl for the difference of two means

- Two populations with respective means μ_{1} and μ_{2}
- E.g., men's annual salary vs women's annual salary
- Take 2 independent random sample, one from each population
- $95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}=$

$$
\bar{x}_{1}-\bar{x}_{2} \pm(1.96 \times \mathrm{SE})
$$

where

$$
\mathrm{SE}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

An example (cell-phone use in accidents)

Example 9, pp. 446-447

- University of Utah student data -
- Two groups: cell vs no-cell (control); 32 in each
- Variable: mean response time

	no	Mean	SD
Cell phone	32	585.2	89.6
No cell	32	533.7	65.3

- $\mu_{1}=$ mean response time for cell-phone users; $\mu_{2}=$ mean response time for non cell-phone users
- $\bar{x}_{1}=585.2, \bar{x}_{2}=533.7 \quad s_{1}=89.6, s_{2}=65.3$
$n_{1}=n_{2}=32$

An example (cell-phone use in accidents)

Cell-phone example, continued

- $\mu_{1}=$ mean response time for cell-phone users; $\mu_{2}=$ mean response time for non cell-phone users
- $\bar{x}_{1}=585.2, \bar{x}_{2}=533.7 \quad s_{1}=89.6, s_{2}=65.3$
$n_{1}=n_{2}=32$
- Standard error =

$$
\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \approx 19.599
$$

- 95% CI for $\mu_{1}-\mu_{2}=$

$$
\begin{aligned}
\bar{x}_{1}-\bar{x}_{2} \pm(1.96 \times \mathrm{SE}) & \approx \underbrace{585.2-533.7}_{51.5} \pm \underbrace{(1.96 \times 19.599)}_{38.41} \\
& =(13.1,90)
\end{aligned}
$$

- Use the CI for two-sided testing [requires large n_{1} and n_{2}]

