Math 1070-2: Spring 2008 Lecture 12

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

April 16, 2008

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Reading from Chapter 9

- §9.1 [CIs & testing for two proportions]
- §9.2 [CIs for the difference of two means; skip testing for the difference of two means]
- §9.4 [Cls & testing for paired data]
- Skip: §9.3 and §9.5

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

CI for the difference of two proportions (Recap)

- ▶ 95% CI for p₁ − p₂
- Sample propotions: p̂₁ and p̂₂
- Standard error

$$\mathsf{SE} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Estimate the standard error

$$\widehat{se} = \sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}} + rac{\hat{p}_2(1-\hat{p}_2)}{n_2}$$

- 95% CI is $\hat{p}_1 \hat{p}_2 \pm 1.96 \times \widehat{se}$
- What about other confidence intervals? Say, 99%?

э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

An example (aspirin vs heart disease) Example 2 & 3, pp. 427–429

- 5-year double-blind study; 22071 subjects who took aspirin/placebo every other day
- Results:

Group	Heart attack	No heart attack	Total
Placebo	189	10,845	11,034
Aspirin	104	10,933	11,037

- ▶ p₁ = proportion of heart attacks in the "placebo group"
- ▶ p₂ = proportion of heart attacks in the "aspirin group"
- ▶ $\hat{p}_1 = 189/11034 \approx 0.0171$, $\hat{p}_2 = 104/11037 \approx 0.0094$

An example (aspirin vs heart disease)

Example 2 & 3, pp. 427-429, continued

- ▶ p₁ = proportion of heart attacks in the "placebo group"
- p₂ = proportion of heart attacks in the "aspirin group"
- $\hat{p}_1 \approx 0.0171, \, \hat{p}_2 \approx 0.0094$
- Standard error estimate

$$\mathsf{SE} = \sqrt{\frac{0.0171(1-0.0171)}{11034} + \frac{0.0094(1-0.0094)}{11037}} \approx 0.0015$$

 $\underbrace{(\underbrace{0.0171-0.0094}_{0.0077})}_{0.0077} \pm \underbrace{(\underbrace{1.96 \times 0.0015}_{0.00294})}_{0.00294} \approx (0.00476, 0.01064)$

Meaning?

イロト 不良 とくほ とくほう 二日

Testing for two proportions

•
$$H_0: p_1 = p_2 \text{ vs } H_a: p_1 \neq p_2$$

Similar, but use the pooled SE:

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}} = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)},$$

where \hat{p} denotes the pooled proportion.

In the aspiring-versus-heart disease problem, p̂ is the total proportion of heart attacks; i.e.,

$$\hat{p} = \underbrace{\frac{\overbrace{189+104}}{11034+11037}}_{\text{total size of study}} = \frac{293}{22071} \approx 0.0133.$$

э

・ロット (雪) ・ (日) ・ (日)

A testing example

Aspirin vs heart disease, the calculations

- $H_0: p_1 = p_2 \text{ vs } H_a: p_1 \neq p_2$
- Pooled SE:

$$\mathsf{SE} = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}$$

• $\hat{p} \approx 0.0133, n_1 = 11034, n_2 = 11037$

pooled SE

$$pprox \sqrt{0.0133(1-0.0133) imes \left(rac{1}{11034} + rac{1}{11037}
ight)} pprox 0.00154$$

Therefore,

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\text{pooled SE}} \approx \frac{0.0171 - 0.0094}{0.00154} = 5 \quad \rightarrow \quad P\text{-value} \approx 0$$

A testing example

Aspirin vs heart disease, the report

1. Assumptions:

- Variables? Quant?
- Random sampling?
- Normality?
- 2. Hypotheses: H_0 : $p_1 = p_2$ vs H_a : $p_1 \neq p_2$
- 3. Test statistic: $z \approx 5$
- 4. *P*-value: ≈ 0
- 5. Conclusion[s]?

э

・ロット (雪) (日) (日)

CI for the difference of two means

- Two populations with respective means μ_1 and μ_2
 - E.g., men's annual salary vs women's annual salary
- Take 2 independent random sample, one from each population
- 95% CI for $\mu_1 \mu_2 =$

$$\bar{x}_1 - \bar{x}_2 \pm (1.96 \times \text{SE}),$$

where

$$\mathsf{SE} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

An example (cell-phone use in accidents) Example 9, pp. 446–447

- University of Utah student data ⁽⁽⁾
- Two groups: cell vs no-cell (control); 32 in each
- Variable: mean response time

	no	Mean	SD
Cell phone	32	585.2	89.6
No cell	32	533.7	65.3

μ₁ = mean response time for cell-phone users; μ₂ = mean response time for non cell-phone users

►
$$\bar{x}_1 = 585.2, \ \bar{x}_2 = 533.7$$
 $s_1 = 89.6, \ s_2 = 65.3$
 $n_1 = n_2 = 32$

э

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

An example (cell-phone use in accidents)

Cell-phone example, continued

μ₁ = mean response time for cell-phone users; μ₂ = mean response time for non cell-phone users

►
$$\bar{x}_1 = 585.2, \ \bar{x}_2 = 533.7$$
 $s_1 = 89.6, \ s_2 = 65.3$
 $n_1 = n_2 = 32$

Standard error =

$$\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}pprox$$
 19.599

• 95% CI for
$$\mu_1 - \mu_2 =$$

$$\bar{x}_1 - \bar{x}_2 \pm (1.96 \times \text{SE}) \approx \underbrace{585.2 - 533.7}_{51.5} \pm \underbrace{(1.96 \times 19.599)}_{38.41}$$

= (13.1,90)

▶ Use the CI for two-sided testing [requires large *n*₁ and *n*₂]