Math 1070-2: Spring 2008 Lecture 11

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

April 9, 2008

ж

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

This week's reading

Only 2 weeks left

Complete the material of chapter 8:

- ► §8.3–§8.4
- ► Skip §8.5–§8.6
- ► §9.1

ヘロン 人間 とくほど 人ほど 一日

Testing for means

- H₀: μ = 0 versus H_a: μ ≠ 0, H_a: μ > 0, or H_a: μ < 0 [or more generally]
- $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$ [μ_0 known, etc.]
- Always check:
 - Assumptions

[quant. var.; random sample; population pprox normal and/or n large]

- Hypotheses [of above type]
- Test statistic:

$$\frac{\bar{\mathbf{x}} - \mu_0}{\mathsf{SE}} = \frac{\bar{\mathbf{x}} - \mu_0}{s/\sqrt{n}} \quad [\approx t \text{ with } n - 1 \text{ df, if } H_0 \text{ true}]$$

- ► *P*-value:
 - Two-tail for H_a : $\mu \neq \mu_0$
 - Right-tail for H_a : $\mu > \mu_0$
 - ► Left-tail for H_a : µ < µ₀
- Conclusion

Anorexia example

Example 7, pp. 388-389

- Study different therapies for teenage girls with anorexia
- Weight measured before & after therapy
- Variable: Weight change = wt after wt before therapy
- n = 29 girls
- $\bar{x} = 3.00$ pounds, s = 7.32 pounds

イロト 不良 とくほ とくほう 二日

Anorexia example

Continued

Assumptions:

- Quant. var.
- Sampling not random [interpret results with care]
- Normal population [could be ... tentative]
- Hypotheses: [Is the test effective?]
 - ► H₀: µ = 0 versus H_a: µ > 0
- Test statistic:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{3 - 0}{7.32/\sqrt{29}} \approx 2.21.$$

► P-value: [Use t with n - 1 = 28 df]

2.5% = 0.025 > P-value > 0.01 = 1% [middle]

► Conclusion: *P*-value \ll 0.05 \rightarrow reject H_0 [even for $H_a: \mu \neq 0$]

Robustness

- If H_a : $\mu \neq \mu_0$ is two-sided then normality not that important
- Normality *important* for one-sided tests. Therefore testing for means OK if:
 - n large;
 - n small, but population normal; or
 - $H_a: \mu \neq \mu_0$ is two-sided
 - Anorexia example: We are 95% confident that $\mu \neq 0$

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

CI for $p_1 - p_2$

• Point estimate for $p_1 - p_2$ is $\hat{p}_1 - \hat{p}_2$

► Fact:

$$\mathsf{SE} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

► CI for *p*₁ − *p*₂: [*n*₁ and *n*₂ large]

$$(\hat{p}_1 - \hat{p}_2) \pm z \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

ヘロン 人間 とくほど 人ほど 一日

An example

pp. 429-431

- Want difference between placebo & aspirin
- *n*₁ = 11034, *n*₂ = 11037 [large √]

•
$$\hat{p}_1 = 0.017, \, \hat{p}_2 = 0.009$$

$$\hat{p}_1 - \hat{p}_2 = 0.017 - 0.009 = 0.008$$

$$SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$
$$= \sqrt{\frac{0.017 \times 0.983}{11034} + \frac{0.009 \times 0.991}{11037}} \approx 0.0015$$

• 95% CI for $p_1 - p_2$:

 $0.008 \pm (1.96 \times 0.0015) = (0.005\,, 0.011)$

