Math 1070-2: Spring 2008
 Lecture 11

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

April 9, 2008

This week's reading
Only 2 weeks left

- Complete the material of chapter 8:
- §8.3-§8.4
- Skip §8.5-§8.6
- §9.1

Testing for means

- $H_{0}: \mu=0$ versus $H_{a}: \mu \neq 0, H_{a}: \mu>0$, or $H_{a}: \mu<0$
[or more generally]
- $H_{0}: \mu=\mu_{0}$ versus $H_{a}: \mu \neq \mu_{0} \quad$ [μ_{0} known, etc.]
- Always check:
- Assumptions
[quant. var.; random sample; population \approx normal and/or n
large]
- Hypotheses [of above type]
- Test statistic:

$$
\frac{\bar{x}-\mu_{0}}{\mathrm{SE}}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \quad\left[\approx t \text { with } n-1 \mathrm{df} \text {, if } H_{0} \text { true }\right]
$$

- P-value:
- Two-tail for $H_{a}: \mu \neq \mu_{0}$
- Right-tail for $\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}$
- Left-tail for $\mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}$
- Conclusion

Anorexia example

Example 7, pp. 388-389

- Study different therapies for teenage girls with anorexia
- Weight measured before \& after therapy
- Variable: Weight change = wt after - wt before therapy
- $n=29$ girls
- $\bar{x}=3.00$ pounds, $s=7.32$ pounds

Anorexia example

Continued

- Assumptions:
- Quant. var.
- Sampling not random [interpret results with care]
- Normal population [could betentative]
- Hypotheses: [Is the test effective?]
- $H_{0}: \mu=0$ versus $H_{a}: \mu>0$
- Test statistic:

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{3-0}{7.32 / \sqrt{29}} \approx 2.21
$$

- P-value: [Use t with $n-1=28 \mathrm{df}]$

$$
2.5 \%=0.025>P \text {-value }>0.01=1 \% \quad[\text { middle }]
$$

- Conclusion: P-value $\ll 0.05 \rightarrow$ reject H_{0} [even for $\left.H_{a}: \mu \neq 0\right]$

Robustness

- If $H_{a}: \mu \neq \mu_{0}$ is two-sided then normality not that important
- Normality important for one-sided tests. Therefore testing for means OK if:
- n large;
- n small, but population normal; or
- $H_{a}: \mu \neq \mu_{0}$ is two-sided
- Anorexia example: We are 95\% confident that $\mu \neq 0$

Cl for $p_{1}-p_{2}$

- Point estimate for $p_{1}-p_{2}$ is $\hat{p}_{1}-\hat{p}_{2}$
- Fact:

$$
S E=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

- Cl for $p_{1}-p_{2}$: [n_{1} and n_{2} large]

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

An example

pp. 429-431

- Want difference between placebo \& aspirin
- $n_{1}=11034, n_{2}=11037$

- $\hat{p}_{1}=0.017, \hat{p}_{2}=0.009$
- $\hat{p}_{1}-\hat{p}_{2}=0.017-0.009=0.008$

$$
\begin{aligned}
S E & =\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \\
& =\sqrt{\frac{0.017 \times 0.983}{11034}+\frac{0.009 \times 0.991}{11037}} \approx 0.0015
\end{aligned}
$$

- $95 \% \mathrm{Cl}$ for $p_{1}-p_{2}$:

$$
0.008 \pm(1.96 \times 0.0015)=(0.005,0.011)
$$

