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Preface

These are the notes for a one-semester course based on ten lectures given at theEcole Polytechnique
Féd́erale de Lausanne, April–June 2001. My goal has been to illustrate, in some detail, some of the salient
features of the theory of multiparameter processes and in particular, Cairoli’s theory of multiparameter mar-
tingales. In order to get to the heart of the matter, and develop a kind of intuition at the same time, I have
chosen the simplest topics of random walks, Brownian motions, etc. to highlight the methods. The full
theory can be found inMulti-Parameter Processes: An Introduction to Random Fields(henceforth, referred
to as MPP) which is to be published bySpringer-Verlag, although these lectures also contain material not
covered in the mentioned book.

The first eight lectures are introductory material and everything is covered in some detail. The last two
lectures are about potential theory of processes; in order to cover enough material, I have decided not to
cover balayage; this makes the arguments of these two lectures somewhat heuristic, but the details are all
there in MPP for those who are interested to learn more about the subject.

While I have tried to write the lectures faithfully, the heuristic “clumping” picture that I have tried to
develop in the lectures is sadly missing from these notes. My hope is that, if all else is forgotten, one theme
will be remembered, and that is the connections between our heuristic notion of clumping, and the rˆole
played by multiparameter martingales. Some of these notions are being rigorized in joint work with Yimin
Xiao (under the general heading oflocally grown random sets) as I write, but this will have to wait for now.

I am greatful to EPF-L for their hospitality, in particular, to Professor Robert C. Dalang, and for making
my visit possible as well as highly enjoyable. Also, my heartfelt thanks go to all of the attendees of these
lectures. Working with them has been a distinct pleasure for me. Last but not least, I wish to thank the
United States’National Science Foundationfor the generous support of my work on the topic of these
lectures during the past six to seven years.

D. Khoshnevisan
June 2001
Lausanne, Switzerland
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Lecture 1

Examples from Markov chains

In these lectures, I will develop some of the foundations of a theory of multiparameter Markov processes
that is motivated by a number of problems coming from

• probability (intersections of processes, Brownian sheet, percolation on trees, Markov chains, potential
theory);

• mathematical physics (Schr¨odinger operators, the(1
2∆)2 operator of elasticity, polymer measures); as

well as

• recent advances in geology (use of stable sheets in modeling rock strata instead of percolation models).

We will see that even in the study of classical stochastic processes, multiparameter processes arise as
natural objects, although these connections sometimes go unnoticed.

Some of the material of this course is based on my forthcoming bookMulti-Parameter Processes: An
Introduction to Random Fields(Springer). I will make the relevant portions of this book available as needed
during the lectures.

A rough outline of this course is as follows:

• Introduction and motivating examples from Markov chains, percolation, and Brownian motion;

• Capacity, energy, and Hausdorff dimension;

• Cairoli’s theory of multiparameter martingales;

• Multiparameter Markov processes;

• The Fitzsimmons–Salisbury and the Hirsch–Song theories of potential;

• Brownian sheet and potential theory; Kahane’s problem.

Time permitting, and depending on the audience’s interests, we may discuss some aspects of
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• Probability on sigma-finite spaces, L´evy processes and random walks; the Kesten–Bretagnolle crite-
rion for Lévy processes ;

• analysis of sample paths, stochastic codimension.

Many of the techniques in these notes are based on various applications of the theory of martingales. In
the one-parameter setting, this is Doob’s theory, and in the multi-parameter setting, it is Cairoli’s. Many of
you may know that R. Cairoli was a Professor here atEPF–Lausanne, and his theory evolved here, locally.

In the first few lectures, we will play with some of the fundamental concepts developed later in this
course, but in a simple setting, where it is easy to see what is going on, without need for theoretical devel-
opments.

1 Recurrence of Markov Chains

Let S be denumerable, and consider a Markov chainX = {Xn; n ≥ 0} on S. Recall that this means there
are probabilities{Px; x ∈ S}, andtransition functions{pn; n ≥ 0}, onS × S, such that

• Px{X0 = x} = 1, for all x ∈ S;

• Px{Xn = a |Fk} = Px{Xn = a |Xk} = pn−k(Xk, a), Px-a.s. for alln ≥ k ≥ 0 and alla ∈ S,
whereF = {Fj; j ≥ 0} is the filtration generated byX.

One thinks ofpn(a, b) as the probability that, inn time steps, the Markov chain goes froma to b.
Following Poincar´e, Pólya, Chung, etc., we say thatx ∈ S is recurrent, if starting fromx ∈ S, n 7→ Xn

hitsx infinitely often, with probability one. More precisely,x is recurrent if

Px{∀m ≥ 0,∃n ≥ m : Xn = x} = 1.

When isx recurrent? The classical condition of P´olya (for simple walks), Chung–Fuchs, etc. is

Theorem 1.1 (Ṕolya’s Criterion) x ∈ S is recurrent if and only if
∑

n pn(x, x) = +∞.

A rough explanation of the proof that is to come is needed. Namely, our proof uses the fact that ifX
hits x, it will do so several times in close proximity of one another. Thus, near the times whenX hits x,
one expects to observe an unusual contribution to the

∑
j 1{Xj=x}. In even rougher terms, the random set

{n : Xn = x} is comprised of a bunch of i.i.d.–looking “clumps”. The Paley–Zygmund inequality provides
us with a key method in analysing clumping situations. It states
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Lemma 1.2 (Paley–Zygmund’s Inequality) SupposeZ ≥ 0 is a nontrivial random variable inL2(P).
Then, for allε ∈ [0, 1],

P
(
Z > εE{Z}) ≥ (1− ε)2

(
E{Z})2

E{Z2} .

Proof Using Cauchy–Schwarz inequality,

E{Z} ≤ εE{Z} + E
(
Z;Z > εE{Z})

≤ εE{Z} +
√
E{Z2} · P(

Z > εE{Z}).

Just solve. �

Proof of Theorem 1.1Let Jn =
∑n

j=0 1{Xj=x} to see thatx is recurrent if and only ifPx{J∞ = ∞} = 1.
Clearly, ∑

n

pn(x, x) < +∞ ⇐⇒ Ex{J∞} < +∞ =⇒ J∞ < +∞, Px-a.s.

This is one half of the result. “Clumping” says that this should be sharp. To prove it, we assume that∑
n

pn(x, x) = Ex{J∞} = +∞,

and first notice that

Ex{J2
n} ≤ 2

∑∑
0≤i≤j≤n

Px{Xi = x , Xj = x}

= 2
∑∑
0≤i≤j≤n

pi(x, x)pj−i(x, x)

≤ 2
[
Ex{Jn}

]2
.

Of course, one always has‖Z‖2 ≥ ‖Z‖1. The above states that a kind of converse to this holds forZ = Jn.
This, together with the Paley–Zygmund inequality, shows for alln ≥ 1 and allε ∈ [0, 1],

Px

(
Jn ≥ εEx{Jn}

) ≥ (1− ε)2

2
.

Thus, using our assumption thatEx{J∞} = +∞, and choosing anyε > 0,

Px{J∞ = +∞} = lim
n→∞Px

(
J∞ ≥ εEx{Jn}

)
≥ lim inf

n→∞ Px

(
Jn ≥ εEx{Jn}

)
≥ 1

2(1− ε)2.
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This being true for allε ∈ (0, 1], we have shown thatPx{J∞ = +∞} ≥ 1
2 . We need to show this

probability is1. Usually, this step is done by stopping time arguments. Instead, we make an argument that
has multiparameter extensions, and this is where martingales come in. Henceforth, we assumePx{J∞ =
∞} is positive, and strive to show that it is one.

Let us defineMn = Px{J∞ = +∞|Fn}, and apply Doob’s martingale convergence theorem. Indeed,
Fn increases to∨nFn which means thatlimn Mn = 1{J∞=∞}, Px-a.s. On the other hand, by the Markov
property,Mn = PXn{J∞ = +∞} (why?) Therefore, on the event thatXn hits x infinitely often (i.e., on
{J∞ = +∞}), Mn = Px{J∞ = +∞}, infinitely often. In particular,Px-a.s. on{J∞ = ∞},

1 = 1{J∞=∞} = lim
n

Mn = Px{J∞ = ∞}.

This finishes our proof. �

SOMETHING TO TRY. Show that there are constantsCp such that for allp > 1 and alln ≥ 1,

‖Jn‖p ≤ Cp‖Jn‖1.

Thus,{Jn}n≥1 forms what is called a uniformly hypercontractive family of operators on the underlying
probability space. Hypercontractivity is known to be a powerful property in analysis.
(HINT. By Jensen’s inequality, it suffices to do this for integersp > 1.)

2 Recurrence for Inhomogeneous Markov Chains

This subsection may not be in the lecture and can be omitted on first reading.
Recall that a process{Xn; n ≥ 0} is an inhomogeneous Markov chainif Px{Xn = a |Fm} =

Px{Xn = a |Xm} = pm,n(Xm, a), whenn > m. Thus, the only difference between these and regular
Markov chains is that the transition functions,pm,n, need not satisfypm,n(a, b) = p0,n−m(a, b).

SOMETHING TO TRY. If X is an inhomogeneous Markov chain onS, the processY = {(n,Xn); n ≥ 0}
defines a homogeneous Markov chain onZ× S. The processY is Doob’sspace-timeprocess.

What happens when isx recurrent for an inhomogeneous Markov chainX? Perhaps not surprisingly,
the answer is more complicated, although similar ideas as our proof of Theorem 1.1 still work. Namely,
recurrence still occurs by clumping. However, due to the inhomogeneity of the chain, the clumps need not
be evenly distributed. In more mathematical terms, we need to consider a weighted version of the number
of times that the chain hitsx. Due to the absence of 0–1 laws, we also revise our definition of recurrence
and say thatx is recurrent if Px{J∞ = ∞} > 0, whereJ∞ was defined in the previous subsection.
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Supposing thatF is a subset ofZ = {0, 1, . . . , }, we writeµ ∈ P(F ) meaning that{µi; i ∈ F} are
probabilities:µi ∈ [0, 1] and

∑
i∈F µi = 1. By theenergyatx of such aµ, we mean the functional

Ex(µ) =
∑ ∑
0≤k≤j

p
0,j

(x,x)>0

p
k,j

(x, x)
p0,j (x, x)

µj µk,

where, we recall,pk,j ’s are the transition functions of the inhomogeneous Markov chainX.
Thecapacityatx of F is defined by Gauss’ minimum energy principle. Namely,

Cx(F ) =
[

inf
µ∈P(F )

Ex(µ)
]−1

,

whereinf ? = +∞, and1 ÷∞ = 0. Then, we have the following quantitative estimate that is interesting
even for homogeneous Markov chains:

Theorem 2.1 For all F ⊆ Z and allx ∈ S,

1
2Cx(F ∩Gx) ≤ Px{∃n ∈ F : Xn = x} ≤ Cx(F ∩Gx),

whereGx = {i ≥ 0 : Px[Xi = x] > 0}.
In particular, x is recurrent if and only iflimN→∞ Cx({N,N + 1, . . . , }) > 0.
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Lecture 2

Examples from Percolation on Trees and
Brownian Motion

1 Proof of Theorem 2.1

The characterization of recurrence follows from the asserted inequalities, upon noticing that wheneverF ⊂
F ′, C(F ) ≤ C(F ′), so thatlimN C({N,N + 1, . . .}) exists. It remains to verify the two inequalities.

For anyµ ∈ P(F ∩Gx), define

Iµ =
∑
i∈Gx

1{Xi=x}
Px{Xi = x} µi.

Clearly,Px{Xi = x} = p0,i(x, x), and

Ex{Iµ} = 1. (1.1)

This functionalIµ is a normalized, weighted, version ofJn in our proof of Theorem 1.1.1. With this in
mind, we estimate its second moment in a similar way as we did that ofJn. Namely,

Ex{I2
µ} ≤ 2

∑ ∑
i,j∈Gx:

i≤j

Px{Xi = Xj = x}
p0,i(x, x)p0,j (x, x)

µi µj

= 2Ex(µ), (1.2)

sincePx{Xi = Xj = x} = p0,i(x, x)pi,j (x, x) if i ≤ j. Eq. (1.1) and the above combine, thanks to the
Paley–Zygmund inequality [Lemma 1.1.2], to show that for allµ ∈ P(F ∩Gx),

Px{∃n ∈ F : Xn = x} ≥ [
2Ex(µ)

]−1
.
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Optimize over allµ ∈ P(F ) to derive the first inequality of Theorem 1.2.1. So far, we have followed our
proof of Theorem 1.1.1 but withJn replaced byIµ. For the other bound, we need to do more work, since
not all weightsµ work.

For this bound, we can assume, without loss of generality, thatPx{∃n ∈ F : Xn = x} > 0. Let
T = inf{n ∈ F : Xn = x}, whereinf ? = +∞. Then,T is a stopping time and our assumption is
equivalent toPx{T < ∞} > 0. In particular,µ ∈ P(F ∩Gx), where we define

µi = Px{T = i |T < ∞}, ∀i = 0, 1, 2, . . . .

We consider the following martingale based onIµ for thisµ:

Mn = Ex{Iµ |Fn}, ∀n ≥ 0.

Clearly,

Mn =
∑
i∈Gx

Px{Xi = x |Fn}
p0,i(x, x)

µi

≥
∑

i∈Gx:
i≥n

Px{Xi = x |Fn}
p0,i(x, x)

µi

=
∑

i∈Gx:
i≥n

pn,i(Xn, x)
p0,i(x, x)

µi

≥
∑

i∈Gx:
i≥n

pn,i(x, x)
p0,i(x, x)

µi · 1{Xn=x}.

In particular,

MT 1{T<∞} ≥
∑

i∈Gx:
i≥T

p
T,i

(x, x)
p0,i(x, x)

µi · 1{T<∞}.

Taking expectations, and using the special form ofµ gives

Ex{MT ;T < ∞} ≥ Ex(µ) · Px{T < ∞}.
It remains to show that the left hand side is1. But,

Ex{MT ;T < ∞} ≤ lim inf
n→∞ Ex{MT∧n}

= lim inf
n→∞ Ex{M0}

= 1.

Justification: the first inequality is from Fatou’s lemma, the second equality holds by Doob’s optional stop-
ping theorem, and the third is from Eq. (1.1) above. This concludes our proof. �
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Figure 2.1: A typical ancestral treeΓ

2 Lyons’ Theorem

Consider a finite rooted treeΓ, viewed as an ancestral tree, and with rootα. An example of such a tree can
be found in Figure 2.1, whereα gives birth to two children,α1 andα2 ; α1 gives birth toα11 , α12 andα13 ,
while α2 gives birth toα21 andα22 , who give birth to· · · .

The indices are chosen in a natural way, as is often done, to keep track of the ancestry of any given
individual on the tree. In fact, this orders the vertices ofΓ.

Every edgee in the tree is assigned a random weight,w(e), and we suppose that{w(e); e ∈ Edge(Γ)}
is an independent collection of random variables. In the percolation setting,w(e) ∈ {0, 1}; we can think of
e as “open” whenw(e) = 1, and “closed” whenw(e) = 0.

We will assume that the weightsw(e) are i.i.d., to make our presentation simpler. Thus, there exists
an inherent parameter,p, which is the probabilityp = P{w(e) = 1}. To emphasize the dependence on the
parameterp, we writePp for P.

Now, we define percolation onΓ.
If β is some vertex inΓ, we writeα ↔ β for the event that for all edges,e, that linkα to β, w(e) = 1.

If A is a collection of vertices, we writeα ↔ A for the event∪β∈A{α ↔ β}.
Let ∂Γ denote the collection of all vertices inΓ whose graph distance fromα is maximal. (In Figure

2.1,∂Γ = {αijk} where the indicesi, j andk range over the values1− 4, as allowed by the the figure.) We
then say thatpercolation occurs on the finite treeΓ, if α ↔ ∂Γ.

Let us first look at a finite rooted treeΓ with rootα, and let its depth beD.1 [In Figure 2.1,D = 3.] We
can label, from left to right, the vertices in∂Γ to get vertices1, . . . , N , whereN is the number of vertices
in ∂Γ. Thus, in Figure 2.1, we are relabelingα111 , α112 , . . . , α221 , α222 as vertices1 throughN = 13. For
each of theseN vertices, we can define aD-dimensional random vector,Xi, that is comprised of all the
random weights,w(e), for e’s that link α to vertexi in ∂Γ. Then, it is easy to see thatX1, . . . ,XN is an
inhomogeneous Markov chain, as long as we defineX0 = x under the measurePx, wherex takes its values
in the space of all possible configurations of1’s and0’s corresponding to the rays fromα to ∂Γ. In summary,

1Recall thatD is the number of edges needed to go from the root to the boundary.
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Figure 2.2: The ancestral tree of Figure 2.1, with an attached fictitious first ray

x ∈ S = {0, 1}D. Pictorially, this means that forX to be an inhomogeneous Markov chain, we need to
include an extra fictitious first ray that goes fromα to ∂Γ with no interference with the other rays.

Figure 2.2 shows what we do to Figure 2.1 in order to achieve this.
Now, it is easy to see thatX is an inhomogeneous Markov chain on the state spaceS = {0, 1}D.

We are interested in probability of percolation, which is

Pp{α ↔ ∂Γ} = Px{∃n ∈ {1, . . . , N} : Xn = x},

wherex =

D times︷ ︸︸ ︷
(1, . . . , 1) .

Next, we compute the transition probabilities of this chain. Note that forx = (1, . . . , 1), as given,
p0,j (x, x) = pD, since the above is just the probability that the ray leading to thej-th vertex on∂Γ, counting
from left, is all open. On the other hand, if0 ≤ k < j, pk,j(x, x) is the probability that both rays leading to
k andj are all open. This probability isp

k,j
(x, x) = pD−|kfj|, wherek f j stands for the greatest common

ancestor ofk andj,2 and where|v| denotes the depth of any vertexv. In this way, we obtain

p0,j (x, x)
p

k,j
(x, x)

= p−|kfj|.

SinceGx = ∂Γ, we can combine all this with Theorem 2.1 to obtain[
2 inf

µ∈P(∂Γ)

∑∑
1≤k≤j≤N

p−|kfj|µkµj

]−1 ≤ Pp{α ↔ ∂Γ} ≤
[

inf
µ∈P(∂Γ)

∑∑
1≤k≤j≤N

p−|kfj|µkµj

]−1
.

2This is a vertex on the tree, and is not to be mistaken with the numberk ∧ j. For example, in Figure 2.1,α111 f α134 = α1 .
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The notationk ≤ j is awkward, since it depends on a linear order of the bounadry ofΓ, which makes no
sense when we takeΓ to be an infinite tree. So, it is more convenient to use the inequalities:

1
2

∑∑
1≤k≤j≤N

≤
∑∑

1≤k≤j≤N

≤
∑∑

1≤k≤j≤N

,

to get

[
2 inf

µ∈P(∂Γ)

∑∑
k,j

p−|kfj|µkµj

]−1 ≤ Pp{α ↔ ∂Γ} ≤ 2
[

inf
µ∈P(∂Γ)

≤
∑∑

k,j

p−|kfj|µkµj

]−1
.

When the tree is an infinite tree, the boundary∂Γ still makes sense: it is defined as the collection of all
infinite rays emenating fromα. It should be checked that whenΓ is a finite tree, this agrees with our
previous definition. Moreover, the notion of percolation still makes sense, as well. Namely, we write
α ↔ ∂Γ to mean that for all rooted finite subtreesΓ′ ⊂ Γ with root α, α ↔ ∂Γ′. It turns out that one
can take “hydrodynamical limits”, and letΓ become infinite. In this way, we get an improvement, due to
Benjamini and Peres, of

Theorem 2.1 (Lyons) Consider an infinite, locally finite, rooted treeΓ with root α as above. Then, for any
p ∈ (0, 1),[

2 inf
µ∈P(∂Γ)

∫∫
p−|σfγ| µ(dσ)µ(dγ)

]−1 ≤ Pp{α ↔ ∂Γ} ≤ 2
[

inf
µ∈P(∂Γ)

∫∫
p−|σfγ| µ(dσ)µ(dγ)

]−1
.

In particular, there can be percolation iff there exists a probability measureµ, on ∂Γ, such that∫∫
p−|γfσ| µ(dσ)µ(dγ) < +∞.

SOMETHING TO TRY: Check that the first inequality holds even if we remove the constant2. (Hint: compute
the first two moments ofI =

∫
1{α↔σ} ÷ PP{α ↔ σ}µ(dσ), directly.

The above can be used to find critical percolation probabilities, as well as critical exponents, when the
tree is regularly behaved. For example, ifΓ is k-ary (or, more generally, radially symmetric), aµ that solves
the optimization problem above is uniform measure onΓ, and this makes exact calculations possible; cf.
Lyons (1990).

3 Brownian Motion

Next, we study another example of martingale techniques for clumping analysis by deriving a deep theorem
of P. Lévy on the curve of ad-dimensional Brownian motion,B = {B(t); t ≥ 0}, with B(0) = 0. Namely,
we will show the following:
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Theorem 3.1 (P. Ĺevy) The random setB(R+) ⊂ Rd has positived-dimensional Lebesgue’s measure if
and only ifd = 1.

Whend = 1, this follows from the continuity ofB, and from the fact that it is not a constant function.
Thus, it suffices to reduce attention tod ≥ 2 and show that for any interval[L,U ] where0 < L < U < ∞,
|B([L,U ])| = 0, almost surely. To see what this has to do with clumping, we first note that thank to Fubini’s
theorem,

E{|B([L,U ])|} =
∫
Rd

P{a ∈ B([U,L])} da, (3.1)

where| • | refers to Lebesgue’s measure. Thus, the question is “when isP{a ∈ B([L,U ])} > 0?” Now, it
should not be surprising to see clumping at work: whileP{B(t) ≈ a} is small for any givent, P{B(s) ≈
a|B(t) ≈ t} is not. So, for{t ∈ [L,U ] : B(t) = a} to have any chance of being nonempty, it would have
to be made up of clumps. Temporal homogeneity ofB suggests that these clumps are, moreover, evenly
distributed. All of this suggests looking at the random variable

Jε(a) =
∫ U

L
1{|B(t)−a|≤ε} ds, (3.2)

wherea ∈ Rd is fixed, and we think ofε as small.

12



Lecture 3

Proving Lévy’s Theorem and Introducing
Martingales

In this lecture, I will prove Theorem 3.1, and then, we will start our discussion of multiparameter martingales
in earnest. For the latter part, I will pass out parts of my book, for the former· · · please read on.

1 Proof of Lévy’s Theorem

Here is one estimate that follows easily from the form of the Gaussian density function.

Lemma 1.1 For anya ∈ Rd , there exists positive and finite constantsC1 = C1(a,U) andC2 = C2(a,U),
such that for alls ∈ [0, U ],

C1

( ε√
s
∧ 1

)d ≤ P{|B(s)− a| ≤ ε} ≤ C2

( ε√
s
∧ 1

)d
.

Consequently, sinceL is strictly positive, there exists nontrivialC3 = C3(a,L,U) and C4 =
C4(a,L,U), such that for all sufficiently smallε > 0,

C3ε
d ≤ E{Jε(a)} ≤ C4ε

d. (1.1)

13



Next, we estimate the second moment ofJε(a), viz.,

E{|Jε(a)|2} = 2
∫ U

L

∫ U

s
P{|B(s)− a| ≤ ε , |B(t)− a| ≤ ε} dt ds

≤ 2
∫ U

L

∫ U

s
P{|B(s)− a| ≤ ε , |B(t)−B(s)| ≤ 2ε} dt ds

≤ 2
∫ U

L

∫ U

s
P{|B(s)− a| ≤ ε}P{|B(t − s)| ≤ 2ε} dt ds

≤ 2E{Jε(a)} ·
∫ U

0
P{|B(u)| ≤ 2ε} du

≤ 2C2C4ε
d

∫ U

0

( 2ε√
u
∧ 1

)d
du.

Here is where things get interesting. Whend ≥ 3, the behavior of the above integral is like a constant times
ε2. But, if d = 2, it behaves likeε2 log(1/ε). Finally, if d = 1, the integral behaves likeε (times a constant).
All considered, we get

E{|Jε(a)|2} ≤ C5 ×




ε2, if d = 1
ε2 log(1/ε), if d = 2
εd+2, if d ≥ 3

.

Combine this with Eq. (1.1) and the Paley–Zygmund inequality [Lemma 1.1.2] to get

P{ inf
t∈[L,U ]

|B(t)− a| ≤ ε} ≥ P{Jε(a) > 0}

≥
∣∣E{Jε(a)}∣∣2
E{|Jε(a)|2}

≥ C2
3

C5
×




1, if d = 1
[log(1/ε)]−1, if d = 2
εd−2, if d ≥ 3

. (1.2)

I claim these bounds are sharp, up to multiplicative constants. LetFt denote the filtration ofB, and assume
it satisfies the usual conditions. Let us consider

Mt = E
{ ∫ L+U

L
1{|B(s)−a|≤2ε} ds

∣∣∣Ft

}
.

This is almost the same asE{J2ε(a)|Ft}, but we have increased the upper limit of integration for some
elbow room; you will see why shortly. Clearly,

Mt ≥
∫ L+U

t
P{|B(s) − a| ≤ 2ε |Ft} ds, ∀t ∈ [L,U ].
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You may be wondering about the null sets. If so, that is good. However, there is a general fact about Brown-
ian motion that states thatE{Z|Ft} can be chosen to be continuous. So, the above holds simultaneously for
all t ∈ [L,U ], outside one null set. We go one more step:

Mt ≥
∫ L+U

t
P{|B(s)− a| ≤ 2ε |Ft} ds × 1{|B(t)−a|≤ε}, ∀t ∈ [L,U ]

≥
∫ L+U

t
P{|B(s)−B(t)| ≤ ε |Ft} ds × 1{|B(t)−a|≤ε}, ∀t ∈ [L,U ]

=
∫ L+U

t
P{|B(s − t)| ≤ ε} ds × 1{|B(t)−a|≤ε}, ∀t ∈ [L,U ]

≥
∫ U

0
P{|B(u)| ≤ ε} du × 1{|B(t)−a|≤ε}, ∀t ∈ [L,U ].

The point is that the above integral is nonrandom, and is an object we have seen before: whend = 1, it is
of orderε2, whend = 2, it is of orderε2 log(1/ε), and whend ≥ 3, it is of orderεd+2. So, there must exist
some constantC6 = C6(a, d, U,L), such that

Mt ≥ C61{|B(t)−a|≤ε} ×




ε, if d = 1
ε2 log(1/ε), if d = 2
εd+2, if d ≥ 3

, ∀t ∈ [L,U ].

(We needed the extra “elbow room” to get∀t ∈ [L,U ] in the above.) Now, letT = inf{t ∈ [L,U ] :
|B(t)− a| ≤ ε} to see that

E{MT 1{T<∞}} ≥ C6P{ inf
t∈[L,U ]

|B(t)− a| ≤ ε} ×




ε, if d = 1
ε2 log(1/ε), if d = 2
εd+2, if d ≥ 3

.

Thanks to the boundedness ofM , and by Doob’s optional stopping theorem,E{MT ;T < ∞} = E{Jε(a)},
which is estimated by Eq. (1.1). Combining this and Eq. 1.2 we get
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Theorem 1.2 For anya ∈ Rd , there exists constantsA1 andA2, such that for allε > 0 small,

A1κ(ε) ≤ P{ inf
t∈[L,U ]

|B(t)− a| ≤ ε} ≤ A2κ(ε),

where

κ(ε) =




1, if d = 1
[log(1/ε)]−1, if d = 2
εd−2, if d ≥ 3

.

In particular, sinceB is a continuous random function, we can letε → 0 to see that whend ≥ 2,
P{a ∈ B[L,U ]} = 0 for all a, and we get Theorem 3.1 from integrating this[da].

2 Review of Martingales

Recall thatF = (Fk) is afiltration, if Fk’s are sigma-fields such thatF1 ⊆ F2 ⊆ · · · .
A stochastic processX = (Xk) is adaptedto the filtrationF, if for eachk, Xk is Fk-measurable.
A processM = (Mk) is amartingale, if

• for eachk, Mk ∈ L1(P);

• M is adapted; and

• for all k, E{Mk+1 |Fk} = Mk, a.s.

Check that the third part is equivalent to: for alln ≥ m, E{Mm |Fn} = Mn, a.s.

Proof We can assume thatn > m. Otherwise, there is nothing to prove. SinceFn ⊇ Fm, E{Mm |Fn} =
E{E {Mm |Fm−1} |Fn} = E{Mm−1 |Fn}. Proceed by induction. �

Doob’s Martingales are those of the formMk = E{Y |Fk}, whereY ∈ L1(P).

A stopping timeT is aN ∪ {∞}-valued random variable such that for allk, (T ≤ k) ∈ Fk.
The stopping time property always holds with respect to some filtrationF, of course.
If T is a stopping time, we define

FT =
(
A ∈ ∨kFk : A ∩ (T ≤ k) ∈ Fk, ∀k

)
.

Notes(i) FT is a sigma-field; and (ii) bothT andXT 1{T<∞} areFT -measurable.
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Theorem 2.1 SupposeY ∈ L1(P) andMk = E{Y |Fk} for a given filtrationF. If T is a stopping time,

MT = E{Y |FT}, on (T < ∞).

Proof For allA ∈ FT ,

E{MT ;A ∩ (T = k)} = E{Mk ;A ∩ (T = k)}
= E

{
E(Y |Fk);A ∩ (T = k)

}
= E

{
E(Y ;A ∩ (T = k)|Fk)

}
, sinceA ∩ (T = k) ∈ Fk

= E{Y ;A ∩ (T = k)}
= E

{
E(Y |FT );A ∩ (T = k)

}
, sinceA ∩ (T = k) ∈ FT .

Sum over allk = 1, 2, · · · to see that

E{MT 1{T<∞};A} = E{E (Y |FT )1{T<∞};A}, ∀A ∈ FT .

SinceE (Y |FT )1{T<∞} andMT1{T<∞} are bothFT -measurable, this completes our proof; cf. “Notes”
above for the latter remarks. �

Theorem 2.2 (The Optional Stopping Theorem)SupposeT1 ≤ T2 are bounded stopping times, andM
is a martingale, both with respect to the same filtrationF. Then,

E{MT2 |FT1} = MT1 , a.s.

Proof “Bounded” means that there exists a nonrandomK > 0, such thatT1 ≤ T2 ≤ K. Note that

∀j ≤ K : Mj = E{MK+1 |Fj}.
Thus, by Theorem 2.1,

MT2 =
∑
j≤K

Mj1{T2=j} = E{MK+1 |FT2}, a.s.

SinceFT2 ⊇ FT1, E{MT2 |FT1} = E{MK+1 |FT1}, a.s. Another appeal to Theorem 2.1 does the job.

3 Doob’s Maximal Inequalities

We can now state and prove Doob’s martingale version of Kolmogorov’s inequalities for random walks.

Theorem 3.1 SupposeM is a martingale with respect to a filtrationF. Then, for allλ > 0,

P{max
j≤n

|Mj | ≥ λ} ≤ 1
λ
E{|Mn |;max

j≤n
|Mj | ≥ λ}.
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Proof Let T = inf{k : |Mk| ≥ λ} whereinf? = ∞. This is a stopping time, andT ∧ n is a bounded
stopping time.

By Theorem 2.2,E{Mn |FT∧n} = MT∧n. Applying Jensen’s inequality, we deduce that a.s.,

E{|Mn | |FT∧n} ≥ |MT∧n|.

Consequently,
E{|Mn |;T ≤ n} ≥ E{|MT |;T ≤ n} ≥ λP{T ≤ n},

giving the result, in a slightly different form. �

Corollary 3.2 (Doob) For all p > 1,

E{max
j≤n

|Mj |p} ≤
( p

p− 1
)p
E{|Mn |p},

while

E{max
j≤n

|Mj |} ≤
( e

e− 1
){

1 + E{|Mn | ln+ |Mn|}
}
,

whereln+(x) = ln(x ∨ 1).

Proof We use integration by parts: for any random variableZ ≥ 0, and for allp ≥ 1,

E{Zp} = p

∫ ∞

0
λp−1P{Z > λ} dλ.

Apply this toZ = maxj≤n |Mj | to see that

E{max
j≤n

|Mj|p} = p

∫ ∞

0
λp−1P{max

j≤n
|Mj | > λ} dλ

≤ p

∫ ∞

0
λp−2E{|Mn |;λ ≤ max

j≤n
|Mj |} dλ

= pE
{
|Mn| ·

∫ maxj≤n |Mj |

0
λp−2 dλ

}
(Fubini’ theorem)

=
( p

p− 1
)
E{|Mn | ·max

j≤n
|Mj |p−1}.

By Hölder’s inequality,E{|Mn | · maxj≤n |Mj |p−1} ≤ ‖Mn‖p · ‖maxj≤n |Mj |‖p−1
p . The result follows

from this whenp > 1. For thep = 1 case, see Chapter 1 of MPP. �
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Lecture 4

Preliminaries on Ortho-Martingales

Before our general discussion of ortho-martingales, let us look at a simpler, more concrete, class of multi-
parameter “martingales”; these first arose in Cairoli (1969), and have resurfaced in many works, including
those of Cairoli and Walsh, several times since, and for a number of different reasons.

1 Two Parameters Doob-Type Ortho-Martingales

SupposeF1 andF2 are two one-parameter filtrations. To be sure that we are getting the indices right, we
stress that this notation means, in particular, thatF1 = (F1

1,F
1
2 . . .) andF2 = (F2

1,F
2
2, . . .) are two ordinary

filtrations on the same underlying probability space.

By a two-parameter Doob-type ortho-martingale, we mean the process

Mn,m = E{Y |F1
n ∨ F2

m}, ∀n,m ≥ 1,

whereY ∈ L1(P).
We should recognize that

Mn,m = E{Mn+1,m |F1
n ∨ F2

m}
= E{Mn,m+1 |F1

n ∨ F2
m} (1.1)

= E{Mn+i,m+j |F1
n ∨ F2

m},

for any i, j ≥ 0. This is why we callM a Doob-type ortho-martingale, since an ortho-martingale is to be
thought of as anorthant-wise martingale, i.e., a martingale in each parameter.
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Lemma 1.1 For all p > 1, and for all integersn,m ≥ 1,

E
{

max
i≤n
j≤m

|Mi,j|p
} ≤ ( p

p− 1

)2p
E{|Y |p}.

Proof If we fix i, j 7→ Mi,j is a 1-parameter Doob martingale; cf. Eq. (1.1). Therefore, by Doob’s inequality
(Corollary 3.2, Lecture 3),

E{max
j≤m

|Mi,j |p} ≤
( p

p− 1

)p
E{|Mi,m |p}, ∀i ≥ 1.

Another application of Eq. (1.1) reveals thati 7→ maxj≤m |Mi,j |p is a 1-parameter submartingale (that I
have not defined in the lectures, but you know about.) Therefore, we can apply Doob’s inequality again to
see that

E{max
i≤n

max
j≤m

|Mi,j |p} ≤
( p

p− 1

)p
E{max

j≤m
|Mn,m|p},

which, together with the previous display, proves

E{max
i≤n

max
j≤m

|Mi,j |p} ≤
( p

p− 1

)2p{|Mn,m|},

which has the desired result, thanks to Jensen’s inequality. �

What about thep = 1 case?

Lemma 1.2 For all n,m ≥ 1,

E{max
i≤n
j≤m

|Mi,j |} ≤
( e

e− 1

)2[
2 + E

{|Mn,m| ln+ |Mn,m|
}]

.

For a proof, see Ch. 1 of MPP.

Finally, we have
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Lemma 1.3 For all n,m ≥ 1 and allλ > 0,

P{max
i≤n
j≤m

|Mi,j| ≥ λ} ≤ 1
λ

( e

e− 1

)[
1 + E

{|Mn,m| ln+ |Mn,m|
}]

.

Proof Sincemaxj≤m |Mi,j | is a submartingale for eachi ≥ 1, by Doob’s maximal inequality,

P{max
i≤n
j≤m

|Mi,j | ≥ λ} ≤ 1
λ
E{max

j≤m
|Mn,j |},

and another application of Doob’s maximal inequality does the job; cf. (Corollary 3.2, Lecture 3).�

2 Two-Parameter Convergence Theorems

Continuing with our discussion of the previous section, we now address the question of when, if ever,
lim Mn,m exists.

One can imagine many different notions of limits in the present 2-parameter setting. Here are two
important ones:

• Topological limits. We say thatM has atopological limit (at infinity) if with probability one,
limn,m→∞Mn,m exists. That is, outside one null set, we can letn andm go to infinity in any way we
like and stillMn,m converges. This is, indeed, a topological limit, as can be argued simply as follows:
ConsiderR2/∂R2 , i.e.,R2 where we identify all points on the axes with each other. Endow it with the
relative topology, and then, one-point compactify it to see thatlimn,m→∞ means(n,m) converges, in
the latter topology, to the added compactification points∞, say.

• Pathwise limits. In contrast with topological convergence, pathwise convergence is a probabilistic
notion. A collection of points(i1, j1), . . . , (ik, jk) is an increasing pathif i1 ≤ · · · ≤ ik andj1 ≤
· · · ≤ jk. This extends to the case where some of thei`’s andj`’s are infinity, as well. With this in
mind, we say that our two-parameter orthomartingaleM haspathwise limitsif for every increasing
path (i1, j1), (i2, j2), . . . there exists a null set outside whichlim`→∞Mi`,j`

exists. Both the limit,
here, as well as the null set may depend on the increasing path.

Remark 1 Check that any real-valued functionf(n,m) has topological limits ifflimn f(n,m) (and
limm f(n,m), resp.) existsuniformly in m (in n, resp.)
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Remark 2 If M is non random, the existence of a topological limit at infinity is equivalent to the existence
of pathwise limits at infinity (i.e., when the increasing paths go away from the axes in all directions.) For
nonrandom processes, this is not true, in general, since there are uncountably many increasing paths.

Theorem 2.1 The processM always has limits. Moreover, its pathwise limit at infinity isE{Y |F1∞∨F2∞},
whereF`∞ = ∨j≥1F

`
j. Finally, it has a topological limit at infinity ifE{|Y | ln+ |Y |} < ∞.

Proof The existence of pathwise limits is easy: let(i1, j1), (i2, j2), . . . denote any increasing path to deduce
that ` 7→ Mi`,j`

is a uniformly integrable, one-parameter martingale with respect to the one-parameter
filtration F1

i`
∨ F2

j`
. Thus, by Doob’s theorem, it converges toE{Y |F1∞ ∨ F2∞}, a.s. in andL1(P).

Next, we supposeY ∈ L ln+ L, and aim to prove topological convergence. LetΨ(x) = x ln+(x)
(x > 0) and note that

Ψ(|x− y|) ≤ |Ψ(x)−Ψ(y)|, ∀x, y > 0.

This requires a few lines of calculations, but also follows from convexity consideration; cf. Ch. 1 of MPP.
The preceeding discussion, together with Lebesgue’s dominated convergence theorem, imply that when

Y ∈ L ln+ L,
lim

i,j→∞
E{Ψ(|Mi,j − Y |)} = 0.

In particular, there exists a sequence of constants,c1 ≤ c2 ≤ . . . , such thatlimj→∞ cj = ∞, and

E{Ψ(cj |Mi,j − Y |)} ≤ 1.

(Why?) Now,cj{Mi,j − Y } is also a two-parameter Doob-type ortho-martingale. Thus, we apply Lemma
1.3 to the latter and deduce that for allλ > 0,

P{ sup
i≥1
j≥m

|Mi,j − Y | ≥ λ} ≤ 1
cmλ

sup
j≥m

sup
i≥1

E{Ψ(cj |Mi,j − Y |)} ≤ 1
cmλ

.

The above goes to zero, asm →∞, and this is enough to show that for allλ > 0,

lim sup
m→∞

sup
i≥1
j≥m

|Mi,j − Y | < λ, a.s.

Since the above holds for allλ > 0, this proves our result. �

3 Further Discussion

In general, we haveN one-parameter filtrations,F1, . . . ,FN and say that anN -parameter process is an
ortho-martingale(with respect to these filtrations) if
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• Mt isF1
t1 ∨ · · · ∨ FN

tN
-measurable for allt ∈ NN ;

• for all t ∈ NN , Mt ∈ L1(P); and

• wheneverti ≥ si for all i = 1, . . . , N (written t< s),

E{Mt |F1
s1
∨ · · · ∨ FN

sN
} = Ms, a.s.

We, then, have the following, whose proof is based on ideas that we have already seen in the simpler context
of two-parameter Doob-type ortho-martingales.

Theorem 3.1 (Cairoli) Maximal Inequalities: LetM be anN -parameter ortho-martingale. Then,

E
{

max
s4 t

|Ms|p
} ≤ ( p

p− 1

)Np
E{|Mt |p},

if p > 1. If p = 1,

E
{

max
s4 t

|Ms|
} ≤ ( e

e− 1

)N[
N + E

{|Mt|[ln+ |Mt|]N
}]

.

Convergence TheoremsIf Mt is uniformly integrable for allt ∈ NN , M has pathwise limits a.s. and in
L1(P). Moreover, its pathwise limit at infinity isE{Y |F1∞∨· · ·FN∞}. If supt E{|Mt |[ln+ |Mt|]N−1} < +∞,
M has topological limits, a.s. and inL1(P).

4 Random Walk Examples

4.1 Additive Random Walks

SupposeX andY are two independent mean 0 random walks, and define theadditive random walk, S, by

Sn,m = Xn + Ym, ∀n,m ≥ 1.

LetF1 andF2 denote the filtrations generated byX andY , respectively. That is,

F1
i = σ(X`; ` ≤ i), and

F2
j = σ(Y`; ` ≤ j).

Then, it is easy to see thatS is a two-parameter ortho-martingale.
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4.2 Multi-Parameter Random Walks

SupposeXi,j are i.i.d. mean zero random variables. Therandom walkassociated with theX ’s is

Sn,m =
∑
i≤n
j≤m

Xi,j, ∀n,m ≥ 1.

Now, we need some filtrations. Let

F1
i = σ(X`,j ; ` ≤ i, j ≥ 1)

F2
j = σ(Xi,`; i ≥ 1, ` ≤ j).

Then, it is not hard, and very instructive, to check that for anyn,m ≥ 1 fixed: {Si,j ; i ≤ n, j ≤ m} is a
two-parameter Doob-type ortho-martingale with respect to these filtrations. In fact,1

nmSn,m is a reversed
“ortho-martingale” (later) with respect to the reversed filtrations

R1
i = σ(X`,j ; ` ≥ i, j ≥ 1)

R2
j = σ(Xi,`; i ≥ 1, ` ≥ j).

This, and the reversed analogue of Theorem 3.1 for ortho-martingales, together, prove the interesting half of
Smythe’s law of large numbers:

Theorem 4.1 (Smythe)If X1,1 ∈ L ln+ L,

lim
n,m→∞

Sn,m

nm
= E{X1,1}, a.s. and inL1(P).

Moreover, if(n,m) 7→ 1
nmSn,m has topological limits at infinity, thenX1,1 ∈ L ln+ L.

See MPP and Cairoli and Dalang (1996) for complete pedagogical proofs, as well as related results .
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Lecture 5

Ortho-Martingales and Intersections of
Walks and Brownian Motion

Having motivated orthomartingales somewhat, we proceed in earnest, cookbook style.

1 Ortho-martingales: The Recipe
�

�

�

�
Ingredients

1. An N -parameter process{Mt; t ∈ NN };

2. N one-parameter filtrationsF1, . . . ,FN , such that for eachi = 1, . . . , N , t(i) 7→ Mt is a martingale
with respect toFi.

For instance, takeN = 2: thenM is a martingale (with respect toF1 andF2), if

• for all j, i 7→ Mi,j is a martingale forF1; and

• for all i, j 7→ Mi,j is a martingale forF2.

Example (revisited)Let X1 andX2 be twoindependentmean zero random walks, and consider

F1
i = σ(X1

1 , . . . ,X1
i ) ∨ σ(X2

1 ,X2
2 , . . .)

F2
j = σ(X1

1 ,X1
2 , . . .) ∨ σ(X2

1 , . . . ,X2
j ).

Then,(n,m) 7→ X1
n + X2

m is a two-parameter ortho-martingale forF1 andF2.
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SOMETHING TO TRY: Show that(n,m) 7→ X1
n ·X2

m is an ortho-martingale ifX1 andX2 are independent
martingales.

Example (revisited)SupposeXi,j are i.i.d. mean zero random variables and define the 2-parameter random
walk S by

Sn,m =
∑
i≤n

∑
j≤m

Xi,j .

Then,S is a 2-parameter ortho-martingale with respect to

F1
i = σ(X`,j : ` ≤ i, j ≥ 1)

F2
j = σ(Xi,` : i ≥ 1, ` ≤ j).

Henceforth, whens, t ∈ RN and we writes4 t, we means(i) ≤ t(i) for each coordinatei = 1, . . . , N .

SOMETHING TO TRY: Check that whenM is an ortho-martingale and whens4 t are both inNN , then
E{|Ms |p} ≤ E{|Mt |p} for p > 1. (Hint: Jensen’s inequality.)

Now, we come to ourn maximal inequalities; they are proved working one parameter at a time, just as
the Doob-type examples that were worked out earlier.

Theorem 1.1 (Cairoli’s Inequalities) If M is anN -parameter ortho-martingale indexed byNN say. Then,

E{max
s4 t

|Ms|p} ≤ Cp,NE{|Mt |p}

E{max
s4 t

|Ms|} ≤ C1,N

[
N + E{|Mt | lnN

+ |Mt|}
]

P{max
s4 t

|Ms| ≥ λ} ≤ C1,N−1

λ

[
(N − 1) + E{|Mt | lnN−1 |Mt|}

]
, ∀λ > 0,

where

Cp,N =
( p

p− 1

)Np
and C1,N =

( e

e− 1

)N
.

There is a topological convergence theorem, as well. It is proved by working one parameter at a time, as
in our example from last week, viz.,
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Theorem 1.2 If M is an ortho-martingale, and ifsupt E{|Mt | lnN−1
+ |Mt|} < +∞, then the topological

limit limt→∞ Mt exists, a.s. and inL1(P).

The analogue of pathwise limits, at this level of generality, is tricky. Instead, we will introduce sectorial
limits whenN = 2. The remaining details can be found in MPP.

Henceforth,N = 2, in this section.

The two sectorial limits, when they exist, of a two-variable functionf are defined by the ordered
limiting operations: limn→∞ limm→∞ f(n,m) and limm→∞ limn→∞ f(n,m). In general, even when
they exist, they need not be equal. When both sectorial limits exist and when they both agree, we write
limn,m ∞ f(n,m) for their common value, and call itthe sectorial limit of f .

Theorem 1.3 If M is a uniformly integrable ortho-martingale,limt ∞ Mt exists a.s. and inL2(P).

Proof for N = 2 By uniform integrability,Mi,∞ = limj→∞Mi,j exists a.s. and inL1(P). We now make
two claims:

Claim 1 i 7→ Mi,∞ is uniformly integrable.

Claim 2 i 7→ Mi,∞ is anF1-submartingale.

To prove Claim 1, note that by Fatou’s lemma, for allλ > 0,

E{|Mi,∞ |; |Mi,∞| ≥ λ} ≤ lim
j→∞

E{|Mi,j |; |Mi,j | ≥ λ} ≤ sup
j
E{|Mi,j |; |Mi,j | ≥ λ},

which goes to0 asλ →∞, uniformly in i. Claim 2 is proved similarly. Indeed,

E{Mi+1,∞ |F1
i } ≤ lim inf

j→∞
E{Mi+1,j |F1

i } = lim
j→∞

Mi,j = Mi,∞.

In particular,M1∞,∞ = limi→∞Mi,∞ exists. Of course,M1∞,∞ = limi limj Mi,j is the first sectorial limit,
which we now know exists. Similarly,M∞,j = limi Mi,j exists a.s. and inL1(P), which leads to the
existence of the second sectorial limit,M2∞,∞ = limj limi Mi,j.
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Our job, now, is to check thatM1∞,∞ = M2∞,∞. But for anyk ≥ 1,

E{M1
∞,∞ |F1

k} ≤ lim inf
i→∞

lim inf
j→∞

E{Mi,j |F1
k}

= lim
i→∞

lim
j→∞

Mk,j (by the ortho-martingale property)

= Mk,∞.

Let k →∞ to see that

E{M1
∞,∞ | ∨k F

1
k} ≤ M2

∞,∞.

But M1∞,∞ is always∨kF
1
k-measurable. So,M1∞,∞ ≤ M2∞,∞, which, by symmetry, shows that the two

sectorial limits agree, a.s. �

2 Applications to Intersections of Simple Walks

Our next goal is to apply the maximal inequality for ortho-martingales to a result about the intersections
of independent Brownian motions. To illustrate some of the moment estimates, we first turn to a discrete
version, which is simple to work out, although it does not really need ortho-martingale theory.

Let X1 andX2 be two simple symmetric random walks inZd, and consider

Jn,m =
∑
i≤n

∑
j≤m

1{X1
i = X2

j },

which is nothing other than the number of times the trajectories of the random functionsX1 andX2 inter-
sect.

How big isJn,n? Its mean is easy to estimate. Recall, from the classical local limit theorem, that ifSn

is the simple walk inZd,

P{S2n = 0} ∼ Cd(2n)−
d
2 , asn →∞, and

sup
a∈Zd

P{Sk = a} ≤ Cdk
− d

2 , ∀k ≥ 1.
(2.1)

Of course,P{S2n+1 = 0} = 0, for all n, andan ∼ bn means thatlimn an ÷ bn = 1.
Now, we can estimateE{Jn,m}, sinceX1

i + X2
j has the same distribution asSi+j. Thus,

E{Jn,n} ∼ C ′
d

∑
i≤n

∑
j≤n

(i + j)−
d
2 ,
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asn →∞. The above has the same asymptotics as
∫ n
1

∫ n
1 (x+y)−

d
2 dx dy which can be computed explicitly.

However, it is more elegant to observe that∫
[1,n]2

(x + y)−
d
2 dx dy �

∫
z∈R2:

1≤‖z‖≤cn

‖z‖− d
2 dz

= C

∫ cn

1
w− d

2
+1 dw,

where�means ‘has the same rough asymptotics as’. More precisely,fn � gn means0 < lim infn fn/gn ≤
lim supn fn/gn < ∞. The last line follows from calculating in polar coordinates. As usual, constantsc, Cd,
etc. are immaterial to our discussion. In fact, a little more care can be used to show that

E{Jn,n} ∼ Cd ×




1, if d > 4
ln n, if d = 4
n

1
2 , if d = 3

n, if d = 2
n

3
2 , if d = 1

. (2.2)

We now make the following claim:

Lemma 2.1 In all dimensions, there existsCd such that for alln ≥ 1,

E{J2
n,n} ≤ Cd

∣∣E{Jn,n}
∣∣2.

Admitting Lemma 2.1 for the moment, we combine it with (2.2) and the Paley-Zygmund Lemma
(Lemma 1.2, Lecture 1) to get:

inf
n≥1

P
{
Jn,n ≥ 1

2E (Jn,n)
}

> 0, ∀d ≥ 1.

On the other hand, Eq. (2.2) also shows us thatE{Jn,n} → ∞ iff n ≤ 4. Thus, we have obtained half of
the following theorem, due to Dvoretzky, Erd˝os and Kakutani:

Theorem 2.2 Two independent simple walk paths inZd intersect infinitely often iffd ≤ 4.

As I mentioned earlier, modulo proving Lemma 2.1, we have shown half of this theorem; namely, that
d ≤ 4 implies infinite intersections “with positive probability”, which implies “with probability one”, by
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the Hewitt–Savage 0-1 law. On the other hand, ifd > 5, Eq. (2.1) shows us thatlim supn E{Jn,n} < +∞.
From this, we gather thatJ∞,∞ < +∞, a.s. and we are done. Thus, Theorem 2.2 will follow from our

Proof of Lemma 2.1Just expand the square, and use symmetry considerations to obtain

E{J2
n,n} =

n∑
i=1

n∑
j=1

n∑
i′=1

n∑
j′=1

P{X1
i = X2

j , X1
i′ = X2

j′}

≤ 2
∑

1≤i≤i′≤n

∑
1≤j≤j′≤n

P{X1
i = X2

j , X1
i′ = X2

j′}+

+ 2
∑

1≤i≤i′≤n

∑
1≤j′≤j≤n

P{X1
i = X2

j , X1
i′ = X2

j′}.

In expanding the above, it helps to recognize that there are four cases to consider:

1. i < i′ andj < j′;

2. i < i′ but j > j′;

3. i = i′ but j < j′; and finally

4. i = i′ andj = j′.

Thus, we can write

E{J2
n,n} = 2(T1 + T2 + T3 + T4)

where

T1 =
∑

1≤i<i′≤n

∑
1≤j<j′≤n

P{X1
i = X2

j , X1
i′ = X2

j′}

T2 =
∑

1≤i<i′≤n

∑
1≤j′<j≤n

P{X1
i = X2

j , X1
i′ = X2

j′}

T3 =
∑

1≤i≤n

∑
1≤j<j′≤n

P{X1
i = X2

j = X2
j′}

T4 =
∑

1≤i≤n

∑
1≤j≤n

P{X1
i = X2

j }.

Of course,
T4 = E{Jn,n}. (2.3)
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Furthermore,

T3 =
∑

1≤i≤n

∑
1≤j<j′≤n

P{X1
i = X2

j } · P{X2
j′−j = 0}

≤ E{Jn,n} ·
n∑

j=1

P{X2
j = 0}. (2.4)

ForT2, we note that ifi < i′ andj′ < j,

P{X1
i = X2

j , X1
i′ = X2

j′} = P{X1
i = X2

j′ + ξ1 , X1
i + ξ2 = X2

j′}

where

ξ1 = X2
j −X2

j′ , and

ξ2 = X1
i′ −X1

i .

Thus, by the independence of(ξ1, ξ2) from (X1
i ,X2

j′),

P{X1
i = X2

j , X1
i′ = X2

j′} = P{X1
i = X2

j′ + ξ1 , ξ1 + ξ2 = 0}
≤ sup

a∈Zd

P{X1
i = X2

j′ + a} · P{ξ1 + ξ2 = 0}

= sup
a∈Zd

P{X1
i = X2

j′ + a} · P{X1
i′−i + X2

j−j′ = 0}

= sup
a∈Zd

P{X1
i = X2

j′ + a} · P{X1
i′−i = X2

j−j′},

Now, by another appeal to the local limit theorem,P{X1
i = X2

j + a} ≤ Cd(i + j)−
d
2 ≤ C ′

dP{X1
i = X2

j },
at least wheni + j is even; cf. (2.1). Therefore, by reshuffling the labels,

T2 ≤
∑ ∑
1≤i<i′≤n

∑∑
1≤j′<j≤n

P{X1
i = X2

j , X1
i′ = X2

j′}

≤ Cd

∑∑
1≤i<i′≤n

∑ ∑
1≤j′<j≤n

P{X1
i = X2

j } · P{X1
i′−i = X2

j−j′}

≤ Cd

∣∣E{Jn,n}
∣∣2. (2.5)

Finally,

T1 =
∑

1≤i<i′≤n

∑
1≤j<j′≤n

P{X1
i = X2

j }P{X1
i′−i = X2

j′−j}

≤ 1
2

[
E{Jn,n}

]2
.
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Combining this with Eq.’s (2.3), (2.4) and (2.5), we obtain

E{J2
n,n} ≤ Cd

[
E{Jn,n}

]2 + 2E{Jn,n} ·
[
1 + 2

n∑
j=1

P{X1
i = 0}].

We use the local limit theorem, once more, to see that

n∑
j=1

P{X1
j = 0} ≤ Cd ×




1, if d ≥ 3
lnn, if d = 2
n

1
2 , if d = 1

. (2.6)

The lemma follows from this. �

You should compare Theorem 2.2 with the recurrence theorem for Markov chains, specialized to this
setting; cf. Theorem 1.1 of Lecture 1. Indeed, we note that by the latter theorem, and by the computations
that lead to Eq. (2.6),

Theorem 2.3 The simple walk inZd is recurrent iffd ≤ 2.

Thus, it is the case that some transient walks intersect infinitely many times.

We could have studied this earlier on, since there are no multiparameter martingales needed. However,
the continuous analogue of this theorem forces us to reconsider such a remark. Indeed, we shall prove the
following theorem of Dvoretzky et al. next time, using the Cairoli-Walsh theory.

Theorem 2.4 Let X and Y denote 2 independentd-dimensional Brownian motions, both starting at0.
Then,X(R+) ∩ Y (R+) = {0} iff d ≥ 4.

In the course of our proof of L´evy theorem, we needed a probability estimate (cf. Theorem 1.2 of Lec-
ture 2) that has the following two-parameter analogue, due to Aizenmann and Simon.
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Theorem 2.5 (Aizenmann and Simon)There existsC1 andC2, such that for allε ∈ (0, 1),

C1κ(ε) ≤ P{ inf
1≤s,t≤2

|X(s)− Y (t)| ≤ ε} ≤ C2κ(ε),

where

κ(ε) =




εd−4, if d ≥ 5
[ln(1/ε)]−1, if d = 4
1, if d ≤ 3

.
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Lecture 6

Intersections of Brownian Motion,
Multiparameter Martingales

Before proceeding, I wish to state two open problems; one of them was mentioned in Lecture 3.

Open Problem 1.SupposeXi,j are i.i.d. centered random variables fori, j ≥ 1, and consider the 2-
parameter random walk

Sn,m =
∑
i≤n

∑
j≤m

Xi,j, ∀n,m ≥ 1.

By standardizing them, we can assume, without loss of generality, thatE [Xi,j ] = 0 andE [X2
i,j ] = 1. Then,

it is possible to show that the following law of the iterated logarithm holds:

lim sup
n,m→∞

Sn,m√
4nm log log nm

= 1,

at least as long asX1,1 ∈ L2 lnL; cf. Ch. 4 of MPP. On the other hand,X1,1 ∈ L2 is clearly not enough. In
fact,X1,1 ∈ L2 ln L

ln ln L is necessary for

lim sup
n,m→∞

|Sn,m|√
nm log log nm

< +∞,

(loc. cit.) Is there a necessary and sufficient moment-type condition for the LIL?
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Open Problem 2.By working harder, one can extend Theorem 2.2 of Lecture 5 as follows: ifS1 andS2

are two independent,symmetric, and transient random walks onZd,

#{S1(Z+) ∩ S2(Z+)} = +∞ ⇐⇒
∑
i,j≥1

P{S1
i = S2

j } = +∞.

See Ch. 3 of MPP. Can symmetry be dropped? Are thereanynonsymmetric walks that can be analyzed?

1 Proof of Theorem 2.2

We start, as before, by considering the first two moments of

Jε =
∫ 2

1

∫ 2

1
1{|Xs−Yt|≤ε} ds dt.

Note thatXs − Yt is a normal vector with mean zero and variance matrix
√

s + t times the identity matrix.
Note also that1 ≤ √

s + t ≤ 2, for all s, t ∈ [1, 2]. Thus, by Lemma 1.1 of Lecture 3, we can findC1 and
C2 such that for allε ∈ (0, 1),

C1ε
d ≤ E{Jε} ≤ C2ε

d.

Furthermore,

E{J2
ε } =

∫∫
[1,2]2

∫∫
[1,2]2

P{|Xs − Yt| ≤ ε , |Xs′ − Yt′ | ≤ ε} ds dt ds′ dt′

= 2(T1 + T2),

where

T1 =
∫∫

1≤s≤s′≤2

∫∫
1≤t≤t′≤2

P{|Xs − Yt| ≤ ε , |Xs′ − Yt′ | ≤ ε} ds dt ds′ dt′, and

T2 =
∫∫

1≤s′≤s≤2

∫∫
1≤t≤t′≤2

P{|Xs − Yt| ≤ ε , |Xs′ − Yt′ | ≤ ε} ds dt ds′ dt′.

Clearly,

T1 ≤
∫∫

1≤s≤s′≤2

∫∫
1≤t≤t′≤2

P{|Xs − Yt| ≤ ε} · P{|Xs′−s − Yt′−t| ≤ 2ε} ds dt ds′ dt′

≤ C3

∫∫
1≤s≤s′≤2

∫∫
1≤t≤t′≤2

εd ·
( ε√|s′ − s|+ |t′ − t| ∧ 1

)d
ds dt ds′ dt′.
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We have used Lemma 1.1 of Lecture 3 once more. Now, this shows that

T1 ≤ C ′
3ε

d

∫
x∈R2:
‖x‖≤c

( ε

‖x‖ 1
2 ∧ 1

)d
dx

= C ′′
3 εd

∫ c

0

( ε

r
1
2

∧ 1
)d

r dr

≤ C◦
3εd ×




εd, if d ≤ 3

ε2 ln+(
1
ε
), if d = 4

ε2, if d ≥ 5

.

We will obtain the same estimates forT2:

T2 =
∫∫

1≤s′≤s≤2

∫∫
1≤t≤t′≤2

P{|Xs′ + ξ1 − Yt| ≤ ε , |Xs′ + ξ2 − Yt| ≤ ε} ds dt ds′ dt′

≤
∫∫

1≤s′≤s≤2

∫∫
1≤t≤t′≤2

P{|Xs′ + ξ1 − Yt| ≤ ε , |ξ1 + ξ2| ≤ 2ε} ds dt ds′ dt′,

where
ξ1 = (Xs −Xs′) andξ2 = (Yt′ − Yt).

Note thatXs − Yt is independent of(ξ1, ξ2). Thus,

T2 ≤
∫∫

1≤s′≤s≤2

∫∫
1≤t≤t′≤2

sup
a∈Rd

P{|Xs′ + a− Yt| ≤ ε}P{|ξ1 + ξ2| ≤ 2ε} ds dt ds′ dt′

≤ C4ε
d ×




εd, if d ≤ 3

ε2 ln+(
1
ε
), if d = 4

ε2, if d ≥ 5

,

by yet another application of Lemma 1.1 of Lecture 3. Combining what we have, we obtain

E{Jε} � εd and E{J2
ε } ≤ Cεd ×




εd, if d ≤ 3

ε4 ln+(
1
ε
), if d = 4

ε4, if d ≥ 5

. (1.1)

This is good enough to prove that

P{ inf
1≤s,t≤2

|Xs − Yt| ≤ ε} ≥ Cκ(ε),
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which is the desired lower bound. We now show this is sharp.
Consider the two 1-parameter filtrations

F1
s = σ(Xr; r ≤ s) ∨ σ(Yu; u ≥ 0) and F2

t = σ(Yr; r ≤ t) ∨ σ(Xu; u ≥ 0).

We now estimate

Ms,t = E{Jε |F1
s ∩ F2

t } ≥
∫ 2

s

∫ 2

t
P{|Xu − Yv| ≤ ε |F1

s ∩ F2
t } dv du · 1{|Xs−Yt|≤ ε

2
}

≥
∫ 2−s

0

∫ 2−t

0
P{|Xu−s − Yv−t| ≤ ε

2} dv du · 1{|Xs−Yt|≤ ε
2
}.

Thus, as long as1 ≤ s, t ≤ 3
2 ,

Ms,t ≥
∫ 1

2

0

∫ 1
2

0
P{|Xu−s − Yv−t| ≤ ε

2} dv du · 1{|Xs−Yt|≤ ε
2
}.

Now, the above double integral is bounded below by a constant multiple of∫
z∈R2:
‖z‖≤c

( ε

‖z‖ 1
2

∧ 1
)d

dz ≥ Cd
E{J2

ε }
εd

.

So,

E{ sup
1≤s,t≤ 3

2

M2
s,t} ≥ Cd

[E{J2
ε }

εd

]2
P{ inf

1≤s,t≤ 3
2

|Xs − Yt| ≤ ε
2}.

On the other hand, Cairoli’s maximal inequality asssures us thatE{sups,t M2
s,t} ≤ 16E{J2

ε }, which, to-
gether with Eq. (1.1) yields

P{ inf
1≤s,t≤ 3

2

|Xs − Yt| ≤ ε
2} ≤ Cκ(ε).

By a change of scale, the infimum can be taken overs, t ∈ [1, 2] at little cost, and we are done. �

2 Multiparameter Martingales

Consider anN -parameter process{Mt; t ∈ NN }, and anN -parameter sequence of sigma-fieldsF =
{Ft; t ∈ NN }.

We say thatF is afiltration, if
s4 t =⇒ Fs ⊆ Ft.
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Perhaps it is best to recall thats4 t if and only if si ≤ ti for all i = 1, . . . , N . We say thatM is adaptedto
theN -parameter filtrationF if for all t ∈ NN , Mt isFt-measurable. Finally,M is amartingalewith respect
to the filtrationF if (i) M is adapted toF; (ii) Mt ∈ L1(P) for all t ∈ NN ; and (iii) almost surely,

s4 t =⇒ E{Mt |Fs} = Ms.

In general, multiparameter martingales have not much structure to speak of. However, they do, if the filtra-
tion in question has some conditional independence properties.

2.1 Commutation

We say that theN -parameter filtrationF is commuting, if for all s, t ∈ NN , and for allFt-measurable
bounded random variablesY ,

E{Y |Fs} = E{Y |Fsft},
wheres f t is the point inNN whoseith coordinate issi ∧ ti. The typicalN -parameter filtration doesnot
commute!

Theorem 2.1 If F is a commutingN -parameter filtration, for all random variablesZ ∈ L1(P), and for all
t ∈ NN ,

E{Z|Ft} = E
[
· · · E(

E{Z|F1
t1}

∣∣ F2
t2

) · · · ∣∣∣ FN
tN

]
.

In particular, we shall see, as a consequence, that any martingale with respect to a commutingF is an
ortho-martingale! This, in turn, implies maximal inequalities, convergence theorems, etc.

Proof It suffices to prove this for boundedZ (why?). We will do this whenN = 2.
By Doob’s 1-parameter martingale convergence theorem, and by Lebesgue’s dominated convergence

theorem,

E
[
E{Z |F1

i }
∣∣F2

j

]
= E

[
lim

k→∞
E{Z |Fi,k}

∣∣F2
j

]
= lim

k→∞
E
[
E{Z |Fi,k}

∣∣F2
j

]
= lim

k→∞
lim
`→∞

E
[
E{Z |Fi,k}

∣∣F`,j

]
,

where all of the convergences are taking place inL1(P). Recall thatF is commuting andY = E [Z |Fi,k] is
Fi,k-measurable and bounded. This implies that for any other`, j ≥ 1, a.s.,

E [Y |F`,j] = E [Y |F(i,k)f(`,j)]
= E [Y |Fi∧`,k∧j]
= E [Z |Fi∧`,k∧j].
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Thus, for everyi, j ≥ 0 and for all bounded random variablesZ,

E
[
E{Z |F1

i }
∣∣F2

j

]
= lim

k→∞
lim
`→∞

E [Z |Fi∧`,k∧j], a.s.

This is clearly equal toE{Z|Fi,j}, and the result follows. �

The notion of commutation is equivalent to conditional independence. Recall that two sigma-fields
G1 andG2 areconditionally independent, givenG, if for all boundedGi-measurable random variablesYi

(i = 1, 2),
E{Y1Y2|G} = E{Y1 |G} · E{Y2 |G}.

Theorem 2.2 For a given filtrationF = (Ft; t ∈ NN
0 ), the following are equivalent:

(i) F is commuting; and

(ii) for all s, t ∈ NN
0 , Ft andFs are conditionally independent, givenFsft.

Proof Suppose for allt ∈ NN
0 , Yt is a boundedFt-measurable random variable. Then,

E [YtYs |Ftfs] = E
[
Yt E{Ys |Ft}

∣∣Ftfs

]
= E

[
Yt E{Ys |Ftfs}

∣∣Ftfs

]
, a.s.

Thus,(i) ⇒ (ii). Conversely, supposing that(ii) holds,

E [YtYs] = E
[
E{YtYs |Ftfs}

]
= E

[
E{Yt |Ftfs} · E{Ys |Ftfs}

]
= E

[
E{Yt |Ftfs} · Ys

]
.

SinceFtfs ⊂ Fs and the above holds for all bounded,Fs-measurable random variablesYs, E [Yt |Ftfs] =
E [Yt |Fs], a.s.. This shows that(ii) implies(i) and hence,(ii) is equivalent to(i). �

Example If Xi,j are independent random variables (i, j ≥ 1), defineFn,m = σ(Xi,j ; i ≤ n, j ≤ m) to see
thatF is commuting. In particular, if we also knew that theX ’s have mean zero,Sn,m =

∑
i≤n

∑
j≤m Xi,j

is a martingale, as well as an ortho-martingale. What about additive walks? �

2.2 Back to Martingales

We conclude our discussion of martingales, under commutation, by linking them to ortho-martingales.
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Theorem 2.3 SupposeF is a commutingN -parameter filtration. Then,M is a martingale with respect to
F if and only if it is an ortho-martingale with respect to the marginal filtrations ofF.

Proof Once again, we only really need to do this forN = 2. First, supposeM is an ortho-martingale, and
consideri ≤ n andj ≤ m. Clearly,

E{Mn,m |Fi,j} = E
(
E{Mn,m |F1

i }
∣∣ Fi,j

)
= E{Mi,m |Fi,j}.

Now, projectm to j to see that orthomartingale implies martingale. In fact, for this half, commutation is not
needed.

Conversely, supposeM is a martingale with respect to a commuting filtration. We will show it is an
ortho-martingale for the marginal filtrations. By Doob’s convergence theorem,

E{Mi+1,j |F1
i } = lim

k→∞
E{Mi+1,j |Fi,k}.

Thanks to commutation, the above islimk E{Mi+1,j |Fi,j} = Mi,j. Similarly, E{Mi,j+1 |F2
j} = Mi,j , and

we are done. �

Thus, in the presence of commutation, we have maximal inequalities, convergence theorems, etc.
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Lecture 7

Capacity, Energy and Dimension

We now come to the second part of these lectures which has to do with “exceptional sets”. The most obvious
class of exceptional sets are those of measure0, where the measure is some nice one. As an example,
consider a compact setE ⊂ Rd . One way to construct its Lebesgue measure is as follows: coverE by small
boxes, compute the volume of the cover, and then optimize over all the covers. That is,

|E| = lim
ε→0+

inf
{∑

i

[diam(Ei)]d : E1, E2, . . . closed boxes of diameter≤ ε with ∪i Ei ⊇ E
}

.

Here, we are computing the diameter of the box as twice its`1-radius; i.e., it is the length of any side. This
is equivalent to the usual definition of Lebesgue’s measure, although it is long out of fashion in standard
analysis courses.

1 Hausdorff Dimension and Measures

The first class of exceptional sets that we can discuss are those of Lebesgue’s measure0, of course. But,
this is too crude for differentiating amongst very thin sets. For example, consider the rationalsQ , as well as
Cantor’s tertiary setC. While they are both measure0 sets,C is uncountable, whereasQ is not. We would
like a concrete way of saying thatC is larger thanQ , and perhaps measure how much larger, as well. There
are many ways of doing this, and we will choose a route that is useful for our probabilistic needs. First, note
that for anyα ≥ 0, we can define the analogue of|E| as above. Namely, define

Hα(E) = lim
ε→0+

inf
{ ∑

i

[diam(Ei)]α : E1, E2, . . . closed boxes of diameter≤ ε with ∪i Ei ⊇ E
}

.

This makes sense even ifα ≤ 0.
The set functionHα is called theα-dimensionalHausdorff measure. This terminology is motivated by

the following, which is proved by using the method given to us by Carath´eodory:
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Theorem 1.1 The set functionHα is an outer measure on Borel subsets ofRd . For all α > d,Hα(E) = 0
identically. On the other hand, whenα ≤ d is an integer,Hα(E) equals theα-dimensional Lebesgue’s
measure of Borel setE.

Hausdorff dimensions provide us with a more refined sense of how big a set is. Note that for any compact
(or even Borel, say) setE, there isalwaysa critical α such that for allβ < α, Hβ(E) = 0, while for all
β > α,Hβ(E) = +∞. This is an easy calculation. But it leads to the following important measure-theoretic
notion of dimension:

dim(E) = inf{α : Hα(E) = 0} = sup{α : Hα(E) = +∞}.

This is theHausdorff dimensionof E.
How does one compute the Hausdorff dimension of a set? You typically proceed by establishing an

upper bound, as well as a lower bound. The first step is not hard: just find a “good” coveringEi of diameter
less thanε, and compute

∑
i[diam(Ei)]α. Here is one way to get an upper bound systematically; other ways

abound.
Suppose we are interested in computing the Hausdorff dimension of a given compact setE ⊂ [0, 1]d.

Fix a real numbern ≥ 1, and defineEj = [ j
n , j+1

n [, for integers0 ≤ j ≤ n. Then, it is clear that the
diameter of eachEj is no more than2n , while∪jEj ⊃ E. So,

Hα(E) ≤ ( 2
n

)αNn(E),

whereNn(E) =
∑

0≤j≤n 1{Ij,n ∩ E 6= ?} is the number of times the intervalsIj,n contains portions of

E. Therefore, if we can findα such thatlim supn n−αNn(E) < +∞, we havedim(E) ≤ α.1 Incidentally,
the minimalα such thatlim supn n−αNn(E) < +∞ is the so-calledupper Minkowski (or box) dimension
of E. If we write the latter asdim

M
(E), we have shown that

dim(E) ≤ dim
M

(E). (1.1)

If we replaceEj by ad-dimensional box of the form[ i1n , i1+1
n [× · · · × [ idn , id+1

n [ and repeat the procedure,
we obtain the upper Minkowski dimension ind dimensions, and Eq. (1.1) remains to hold.

We now use this to obtain an upper bound for the tertiary Cantor setC. First, let us recall the following
iterative construction ofC: let C0 = [0, 1]. Now, remove the middle third to obtainC1 = [0, 1

3 ] ∪ [23 , 1].
Next, remove the middle thirds of each of the two subintervals to getC2 = [0, 1

9 ]∪ [29 , 3
9 ]∪ [69 , 7

9 ]∪ [89 , 1], and
so on. In this way, you have a decreasing sequence of compact subsets of[0, 1], and, as such,C = ∩nCn is a
nontrivial compact subset of[0, 1]. At thenth level of construction,Cn is comprised of2n intervals of length

1We do not requiren to be an integer here.
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3−n. Therefore,|Cn| = (2
3 )n → |C| = 0. On the other hand, we just argued that there are2n boxes, of

diameter no greater than (in fact, equal to)3n that coverC. Therefore, we have shown thatN3n(C) = 2n.
In particular, for anyα > log3(2), lim supm→∞(3−m)−αN3m(E) = limm→∞ 3−mα2m = 0. So that,
after a little work, we getdim

M
(E) ≤ log3(2). In fact, it is easy to see, by the same reasoning, that

dimM (E) = log3(2). In any event, we obtain the following:

dim(C) ≤ log3(2) =
ln 2
ln 3

. (1.2)

We will show that this is sharp in that the above inequality is an equality. But first, a question:why not
stick to Minkowski dimension?It is certainly easier to compute than Hausdorff dimension, and at first sight,
more natural. To answer this, try computingdim

M
(Q), or dim

M
of any other dense subset of[0, 1]d for that

matter! You will see that the answer is1! On the other hand, it is not hard to show thatdim(E) = 0 if E is
countable, for then we can writeE = {ri} and note that{ri} is a cover ofE with diameter less thanε. This
seemingly technical difference is really a big one.

Now, to the lower bound fordim(C). Obtaining lower bound on Hausdorff dimension is, in principle,
very hard, since you have to work uniformly over all covers. What makes things difficult is that there are
alot of potential covers!

The ingeneous idea behind obtaining lower bounds is due to O. Frostman who found it in his Ph.D.
thesis in the 1935! Namely,

Theorem 1.2 (Frostman’s lemma)Suppose we knew that the compact setE carries a probability measure
µ that is Hölder-smooth in the following sense: there existsα > 0 and a constantC such that for all
r ∈ (0, 1),

µ(B(y, r)) ≤ Crα,

for µ-almost ally, whereB(y, r) is the`∞-ball of radiusr abouty ∈ Rd . Then,dim(E) ≥ α.

There is a converse to this that we will only need once, and will not prove, as a result; for a proof, see
Appendix C of MPP.

Theorem 1.3 (Frostman’s Lemma (continued))Supposedim(E) ≥ α > 0. Then, for eachβ < α, there
existsµ ∈ P(E) such that

sup
x∈Rd

sup
r∈(0,1)

µ{B(x, r)}
rβ

< +∞.
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Proof I will prove this when instead ofµ-almost allx, the lemma holds for allx. The necessary modifica-
tions to prove the general case are technical but not hard.

Fix ε ∈ (0, 1), and consider any coverE1, E2, . . . of diameter≤ ε. Note that

1 = µ(E) ≤
∑

i

µ(Ei) ≤ C
∑

i

[
diam(Ej)

]α
.

Optimize over all such covers, and letε → 0, to see that1 ≤ 2CHα(E). The theorem follows, since this
shows that for anyβ < α,Hβ(E) = +∞. (To prove in the general case, note that ifµ(Ej) is not less than
C[diam(Ej)]α, we can coverEj by at most2d compact intervalsFj,1, . . . , Fj,2d of diameter less than twice
that ofEj , such thatµ(Fj,k) ≤ C[diam(Fj,k)]α ≤ 2αC[diam(Ej)]α. Thus,µ(Ej) ≤ 2α+dC[diam(Ej)]α,
which is good enough.) �

We use this to complete our proof of the following.

Proposition 1.4 If C denotes the tertiary Cantor set,dim(C) = ln 2
ln 3 .

Proof In light of what we have already done, we only need to verify the lower bound on dimension. We
do this by finding a sufficiently smooth measure onC. Our choice is more or less obvious and is found
iteratively as follows: construct the smoothest possible probability measureµn on Cn and “take limits”.
Now, the smoothest and flattest probability measure onCn is the uniform measure,µn. It is easy to see that
for all x ∈ [0, 1],

µn

(
[x− 3−n, x + 3−n]

) ≤ 2−n = (3−n)ln 2/ ln 3. (1.3)

This is suggestive, but we need to work a little bit more. To do so, we next note that theµn’s are nested:
We write Cn = ∪2n

i=1Ii,n whereIi,n is an interval of length3−n. The nested property of theµn’s is the
following, which can be checked by induction:

∀n ≥ m,∀j = 1, . . . , 2m : µn(Ij,m) = µm(Ij,m) = 2−m.

Standard weak convergence theory guarantees us of the existence of a probability measureµ∞ on the com-
pact setC such that for allm ≥ 1 and allj = 1, . . . , 2m,

µ∞(Ij,m) = µm(Ij,m) = 2−m.

Moreover, Eq. (1.3) extends toµ∞. Namely, for allx ∈ [0, 1] and alln ≥ 0,

µ∞([x− 3−n, x + 3−n]) ≤ (3−n)ln 2/ ln 3.
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Now, if r ∈ (0, 1), we can findn ≥ 0 such that3−n−1 ≤ r ≤ 3−n. Therefore,

sup
x

µ∞([x− r, x + r]) ≤ sup
x

µ∞([x− 3−n, x + 3−n]) ≤ (3−n)ln 2/ ln 3 ≤ (3r)ln 2/ ln 3.

So, we have found a probability measureµ∞ on C, that satisfies the condition of Frostman’s lemma with
C = 3ln 2/ ln 3 = 2 andα = ln 3/ ln 3. This completes our proof. �

2 Energy and Capacity

Supposeµ is a probability measure on some given compact setE ⊂ Rd . We will write this asµ ∈ P(E),
and define for any measurable functionf : E × E → R+ ∪ {∞},

Ef (µ) =
∫∫

f(x, y)µ(dx)µ(dx).

This is theenergyof µ with respect to the gauge functionf ; it is always defined although it may be infinite.
The following energy forms are of use to us:

Energyα(µ) =
∫∫

|x− y|−α µ(dx)µ(dy),

where|x| = max1≤j≤d |xj| for concreteness, although any other Euclidean norm will do just as well. This
is the so-calledα-dimensionalBessel–Riesz energyof µ. The question, in the flavor of the previous section,
is when does a setE carry a probability measure of finite energy?To facilitate the discussion, we define the
capacityof a setE by

Cf (E) =
[

inf
µ∈P(E)

Ef (µ)
]−1

, and in particular,

Capα(E) =
[

inf
µ∈P(E)

Energyα(µ)
]−1

.

The above is Gauss’ principle of minimum energy. Next, we argue that there is a minimum energy measure
called the equilibrium measure. Moreover, its potential is essentially constant, and the constant is the energy.

Theorem 2.1 (Equilibrium Measure) SupposeE is a compact set inRd such that for someα > 0,
Capα(E) > 0. Then, there existsµ ∈ P(E), such that

Energyα(µ) =
[
Capα(E)

]−1
.

Moreover, forµ-almost allx, ∫
|x− y|−α µ(dy) = Energyα(µ).
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Proof By definition, there exists a sequence of probability measuresµn, all supported onE, such that (i)
they have finite energy; and (ii) for alln ≥ 1, (1 + 1

n)[Capα(E)]−1 ≥ Energyα(µn) ≥ [Capα(E)]−1. Let
µ be any subsequential limit of theµn’s. Sinceµ ∈ P(E) as well,Energyα(µ) ≥ [Capα(E)]−1. We aim to
show the converse holds too. By going to a subsequencen′ along whichµn′ converges weakly toµ, we see
that for anyr0 > 0,∫∫

|x−y|≥r0

|x− y|−α µ(dx)µ(dy) = lim
n′→∞

∫∫
|x−y|≥r0

|x− y|−α µn′(dx)µn′(dy) ≤ [Capα(E)]−1.

Let r0 ↓ 0 and use the dominated convergence theorem to deduce the first assertion. For the second asser-
tion, i.e., that the minimum energy principle is actually achieved for some probability measure.
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Lecture 8

Frostman’s Theorem, Hausdorff Dimension
and Brownian Motion

1 Frostman’s Theorem (Continued)

Now, consider

Υη =
{

x ∈ E :
∫
|x− y|−α µ(dy) < (1− η)Energyα(µ)

}
, η ∈ (0, 1).

We wish to show thatµ(Υη) = 0 for all η ∈ (0, 1). If this is not the case for someη ∈ (0, 1), then, consider
the following

ζ(•) =
µ(• ∩Υη)

µ(Υη)
.

Evidently,ζ ∈ P(E), and has finite energy. Define

λε = (1− ε)µ + εζ, ε ∈ (0, 1).

Then,λε is also a probability measure onE, and it, too, has finite energy. In fact, writingλε = µ−ε(µ−ζ),
a little calculation shows that

Energyα(λε) = Energyα(µ) + ε2Energyα(µ− ζ)− 2ε
∫∫

|x− y|−α µ(dx)
[
µ(dy)− ζ(dy)

]
.

(The energy ofµ− ζ is defined as ifµ− ζ were a positive measure.)
Sinceµ minimizes energy, the above is greater than or equal toEnergyα(µ). Thus,

ε2Energyα(µ− ζ) ≥ 2ε
∫∫

|x− y|−α µ(dx)
[
µ(dy)− ζ(dy)

]
.
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Divide by ε and letε → 0 to see that

Energyα(µ) ≤
∫∫

|x− y|−α µ(dx) ζ(dy).

But by the definition ofΥη, the right hand side is no more than(1 − η)Energyα(µ), which contradicts the
assumption thatµ(Υη) > 0. In other words,∫

|x− y|−α µ(dy) ≥ Energyα(µ), µ-a.s.

It suffices to show the converse inequality. But this is easy. Indeed, suppose

Gµ(x) =
∫
|x− y|−α µ(dy) ≥ (1 + η)Energyα(µ),

on a set of positiveµ-measure. The functionx 7→ Gµ(x) is theα-dimensional potentialof the measureµ.
We could integrate [dµ] to get the desired contradiction, viz.,

Energyα(µ) =
∫

Θη

Gµ(x)µ(dx) +
∫

Θ{
η

Gµ(x)µ(dx)

≥ (1 + η)Energyα(µ) · µ(Θη) +
∫

Θ{
η

Gµ(x)µ(dx),

whereΘη = {x : Gµ(x) ≥ (1 + η)Energyα(µ)}. Therefore, by Theorem 2.1 on equilibrium measure,

Energyα(µ) ≥ Energyα(µ)
[
(1 + η)µ(Θη) + µ(Θ{η)

]
= Energyα(µ)

[
1 + ηµ(Θ{η)

]
,

which is a contradiction, unlessµ(Θη) = 0. This concludes our proof. �

SOMETHING TO TRY: The α-dimensional Bessel–Riesz energy defines a Hilbertian pre-norm. Indeed,
defineMα(E) to be the collection of all measures of finiteα-dimensional Bessel–Riesz energy onE. On
this, define the inner product,

〈µ, ν〉 =
∫∫

|x− y|−α µ(dx) ν(dy).

Check that this defines a positive-definite bilinear form onMα(E) if α ∈ (0, d). From this, conclude that
for all µ, ν ∈Mα(E), 〈µ, ν〉2 ≤ Energyα(µ) · Energyα(ν). This fills a gap in the above proof.

Thecapacitary dimensionof a compact setE ⊂ Rd is defined as

dimc(E) = sup
{
α : Capα(E) > 0

}
= inf

{
α : Capα(E) = 0

}
.
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Theorem 1.1 (Frostman’s Theorem)Capacitary and Hausdorff dimensions are one and the same.

Proof Here is one half of the proof: we will show that if there existsα > 0 and a probability measureµ on
E, such thatEnergyα(µ) < +∞ ⇒ dim(E) ≥ α. This shows thatdimc(E) ≤ dim(E), which is half the
theorem.

By Theorem 2.1, we can assume without loss of generality thatµ is an equilibrium measure. In particu-
lar,

µ(B(x, r)) ≤ rα

∫
|x− y|−α µ(dy) = rαEnergyα(µ),

µ-almost everywhere. Frostman’s lemma (Theorem 1.2) shows thatdim(E) ≥ α, as needed.
For the other half, we envoke the second half of Frostman’s theorem (Theorem 1.3) to produce for each

β < dim(E) a probability measureµ ∈ P(E), such that

µ(B(x, r)) ≤ Crβ, ∀x ∈ Rd , r ∈ (0, 1).

But if D denotes the diameter ofE,

Energyγ(µ) =
∞∑

j=0

∫∫
2−j−1D≤|x−y|≤2−jD

|x− y|−γ µ(dx)µ(dy)

≤
∞∑

j=0

2(j+1)γD−γ sup
x∈Rd

µ(B(x, 2−jD)

≤ C2γDβ−γ
∞∑

j=0

2jγ2−jβ,

which sums ifγ < β. Thus, we have shown that for allγ < dim(E), Capγ(E) > 0, i.e.,dimc(E) ≥ γ for
all γ < dim(E), which completes the proof. �

2 The Brownian Curve

Next, we roll up our sleeves and compute the Hausdorff dimension of a few assorted and interesting random
fractals that arise from Brownian considerations. Our goal is to illustrate the methods and ideas rather than
the final word on this subject.

Throughout,B = {Bt; t ≥ 0} denotes Brownian motion inRd . That is, a Gaussian process inRd such
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thatB0 = 0, and

E{Bi
t} = 0 ∀t ≥ 0, i = 1, . . . , d

E{Bi
sB

j
t } =

{
s ∧ t if i = j

0 otherwise
.

Recall also thatB is a strong Markov process. Then, we have already shown that

B hits points iffd = 1, i.e., ∃t > 0 : Bt = 0 ⇐⇒ d = 1.

This follows from our proof of Lévy’s theorem (Theorem 3.1, Lecture 2.) In particular, note that when
d = 1, the Brownian curve has full Lebesgue measure, and also full dimension. On the other hand, when
d ≥ 2, the Brownian curve has zero Lebesgue measure, despite the following result.

Theorem 2.1 If B denotesd-dimensional Brownian motion, whered ≥ 2, dim B(R+) = 2, a.s.

Proof We do this in two parts. First, we show thatdim B(R+) ≤ 2 (the upper bound), and then we show
thatdim B(R+) ≥ 2 (the lower bound). In any event, recall thatd ≥ 2.

Proof of the upper boundRecall from Theorem 1.2, Lecture 3, that for any intervalI ⊂ Rd ,

P{B[1, 2] ∩ I 6= ?} ≤ cκ(|I|), whereκ(ε) =

{
εd−2, if d ≥ 3
ln+

(
1
ε

)
, if d = 2

.

A careful inspection of the proof shows that the constantc depends only onM , as long asI ⊆ [−M,M ]d.
ConsiderI1, . . . , Ind cubes of side1n , such that (i)I◦i ∩ I◦j = ? if i 6= j; and (ii)∪nd

j=1Ij = [0, 1]d. Based
on these, define

Ej =

{
Ij , if Ij ∩B[1, 2] 6= ?

?, otherwise
.

Note thatE1, . . . , End is a( 1
n)-cover ofB[1, 2] ∩ [0, 1]d. Thus,

Hα

(
B[1, 2] ∩ [0, 1]d

) ≤ lim inf
n→∞

nd∑
j=1

n−α1{Ij∩B[1,2] 6=?}.

Consequently, as long asα > 2,

E
{Hα

(
B[1, 2] ∩ [0, 1]d

)} ≤ c lim inf
n→∞

nd∑
j=1

n−ακ
(

1
n

)
= c lim inf

n→∞ nd−ακ
(

1
n

)
= 0.
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In particular,dim(B[1, 2]∩ [0, 1]d) ≤ 2, a.s. Similarly,dim(B[a, b]∩ [−n, n]d) ≤ 2, a.s. for any0 < a < b
andn > 0. Let n ↑ ∞, a ↓ 0 andb ↑ ∞, all along rational sequences to deduce thatdim B(R+) ≤ 2,
a.s. This uses the easily verified fact that wheneverA1 ⊆ A2 ⊆ · · · are compact, and ifHα(Aj) = 0, then
Hα(∪jAj) = 0.

Proof of the lower boundFor the converse, we will show thatdim B[1, 2] ≥ 2, and do this by appealing to
Frostman’s theorem (Theorem 1.1, Lecture 7). To do so, we need to define a probability, or at least a finite,
measure on the Brownian curve. The most natural measure that lives on the curve of{Bs; 1 ≤ s ≤ 2} is the
occupation measure:

O(E) =
∫ 2

1
1{Bs∈E} ds.

With this in mind, note that for anyα > 0,

Energyα(O ) =
∫∫

|x− y|−α O (dx)O (dy) =
∫ 2

1

∫ 2

1
|Bs −Bt|−α ds dt.

By Frostman’s theorem, it suffices to show thatE{Energyα(O )} < +∞ for all 0 < α < 2. But this is easy.
Indeed, note that

E
{
Energyα(O )

}
= 2

∫ 2

1

∫ 2

s
E
{|Bt−s|−α} ds dt = 2

∫ 2

1

∫ 2

s
|t− s|−α

2 ds dt× E{|Z|−α},

whereZ is ad-dimensional vector of i.i.d. standard normals. Sinceα < 2, the double integral is finite. It
suffices to show thatE{|Z|−α 〉 < +∞. But

E{|Z|−α} =
∫ ∞

0
P{|Z|−α > λ} dλ

≤ 1 +
∫ ∞

1
P{|Z|−α > λ} dλ

= 1 + α

∫ 1

0
P{|Z| < u}u−α−1 du (u = λ−

1
α )

= 1 + α

∫ 1

0

[
P{|Z1| ≤ u}]d

u−α−1 du.

But P{|Z1| ≤ u} = (2π)−
1
2

∫ u
−u e−

1
2
λ2

dλ ≤ u. Hence, usingd ≥ 2,

E{|Z|−α} ≤ 1 + α

∫ 1

0
ud−α−1 du ≤ 1 + α

∫ 1

0
u1−α du,

which is finite, as promised. �
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Lecture 9

Potential Theory of Brownian Motion and
Stable Processes

1 Transient Brownian Motion

Classically, probabilistic potential theory has been concerned with connections between Newtonian (and
more general potentials) and hitting probabilities for Markov processes. This is a rich theory that we have
already been introduced to in earlier lectures in the following form:d-dimensional Brownian motion hits
points iff d = 1. In fact, we did this by going alot further. Namely, we estimated the hitting probability of a
small ball, where by hitting probability we mean something like the quantityP{B[1, 2]∩B(x, ε) 6= ?}. The
classical connections run deep: harmonic and excessive functions, removable singularity for various elliptic
PDE’s on domains, etc.

To see immediate connections between Brownian motion and Bessel–Riesz potentials (here, Newtonian
potentials), consider Brownian motion inRd whered ≥ 3, and define the potential operatorU as

Uf(x) = Ex

{ ∫ ∞

0
f(Bs) ds

}
= E

{ ∫ ∞

0
f(Bs + x) ds

}
.

We compute this as follows: for all measurablef : Rd → R+ ,

Uf(x) =
∫
Rd

f(y)
∫ ∞

0

e−
1
2s
‖x−y‖2

(2πs)
d
2

ds dy

=
Γ(d

2 − 1)

2π
d
2

∫
Rd

f(y)
‖x− y‖d−2

dy.

Thus, ifGf denotes the(d − 2)-dimensional Newtonian (and/or Bessel–Riesz) potential off defined by
Gf(x) =

∫
f(y)|x− y|2−d dy, it follows thatUf � Gf .
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Now, let E ⊂ Rd denote a compact set whose hitting time isτ(E) = inf{s ≥ 0 : Bs ∈ E}, and
consider a sub-probability densityf : Rd → R+ such thatf = 0 off of E (OK, provided thatE◦ has
positive Lebesgue’s measure.) Then,

Uf(x) = Ex

{ ∫ ∞

τ(E)
f(Bs) ds; τ(E) < +∞

}
= Ex

{ ∫ ∞

0
f(B′

s + Bτ(E)) ds; τ(E) < +∞
}
,

whereB′ is an independent copy ofB. This holds by the strong Markov property. Hence,

Uf(x) = Ex

{
Uf(Bτ(E)); τ(E) < +∞}

= Ex

{
Uf(Bτ(E))

∣∣ τ(E) < +∞} · Px{τ(E) < +∞}
=

∫
Rd

Uf(x)µ(dx) · Px{τ(E) < +∞},

whereµ(A) = Px{Bτ(E) ∈ A | τ(E) < ∞}. SinceE◦ has positive Lebesgue’s measure, and sinceB
has continuous samples,µ ∈ P(E), and the above holds for all pdf’sf on E. Clearly, µ(dx) << dx.
Suppose thatE is nice enough thatf = dµ/dx is a probability density function. Note, then, thatUf(x) =
c
∫
Rd ‖x− y‖2−d µ(dy) and

∫
Ufdµ = c

∫∫ ‖x− y‖2−d µ(dx)µ(dy) (for the samec), which yields:

Px{τ(E) < +∞} �
∫
Rd ‖x− y‖2−d µ(dy)

Energyd−2(µ)
.

Next, suppose that the starting pointx is strictly outsideE, so that for ally ∈ E, ‖x − y‖ � 1. This shows
that

Px{B(R+) ∩ E 6= ?} � 1
Energyd−2(µ)

,

for some probability measureµ ∈ P(E). In particular,

Px{B(R+) ∩E 6= ?} ≤ cCapd−2(E). (1.1)

It is relatively easy to argue that, in fact, the above is essentially optimal. Indeed, note that ifJ(h) =∫∞
0 h(Bs) ds, whenh is any pdf onE,

Ex{J(h)} =
∫
Rd

∫ ∞

0
h(y)

e−
1
2s
‖x−y‖2

(2πs)
d
2

ds dy

≥ c,

sincesupy∈E ‖x − y‖ ≤ C in the above, and since
∫

hdy = 1. On the other hand, similar calculations
reveal thatEx{|J(h)|2} ≤ CEnergyd−2(h). Thus, by the Paley-Zygmund inequality,

Px{τ(E) < +∞} ≥ c
[

inf
h=pdf onE

Energyd−2(h)
]−1

.
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The above describes an absolutely continuous capacity that can be shown to coincide withCapd−2(E).
Modulo this last step and the part about “E being nice”, we have shown the following which is part of a
greater theorem of S. Kakutani.

Theorem 1.1 (Kakutani) Whend ≥ 3, Brownian motion inRd can hit a compact setE iff Capd−2(E) > 0.

Combining this with Frostman’s theorem, we get:

dim(E) > d− 2 =⇒ B can hitE

dim(E) < d− 2 =⇒ B cannot hitE.
(1.2)

Ford = 1, 2, the above proof breaks down, since our definition ofUf is typically infinite; this is due to the
neighborhood recurrence of Brownian motion inRd , d ≤ 2. However, the basic principle is still correct, as
long as we do something about times near+∞. The classical way to do this is to introduce an independent
mean1 exponential random variablee and define the1-potential operator

U1f(x) = Ex

{ ∫
e

0
f(Bs) ds

}
.

The reason for the choice of the exponential law is thatB stopped ate is still a strong Markov process. Also,
check that

U1f(x) = Ex

{ ∫ ∞

0
e−sf(Bs) ds

}
.

Now, proceed as in the proof of Kakutani’s theorem above, but pay attention to the casesd = 1 andd = 2
separately; we also need to replaceUf byU1f everywhere. This will lead to the complete

Theorem 1.2 (Kakutani’s Theorem) Brownian motion in any dimensiond hits a compact setE iff
Capd−2(E) > 0.

The result is trivial whend = 1 andCap−1(E) = 1 for all E. So, the content is in dimension2, where
Brownian motion hits only (and all) compact sets of positive logarihtmic capacity. In particular, Eq. (1.2)
holds in all dimensionsd ≥ 2.

2 Additive Brownian Motion

SupposeX andY are two independentd-dimensional Brownian motions. We have already encountered the
problem of deciding whenX(R+)∩Y (R+) 6= ?. One way to interpret this is by the following identification:
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X(R+) ∩ Y (R+) 6= ? the origin inRd . One can ask, more generally, what types of sets canZ hit? By
symmetry, we can rewriteZ (in law) as

Zs,t = Xs + Yt, ∀s, t ≥ 0,

and call it additive Brownian motion(with 2 parameters). More generally, we can defineN -parameter
additive Brownian motionZ as

Zt =
N∑

j=1

Bj
tj

, ∀t ∈ RN
+ ,

whereB1, . . . , BN are iidd-dimensional Brownian motions. We can refer toZ as(N, d)-additive Brownian
motion to keep the dimensions straight.

Theorem 2.1 (Hirsch and Song; Kh and Shi)(N, d)-additive Brownian motion can hit a compact setE
iff Capd−2N (E) > 0.

Sketch of Proof We will sketch an argument that shows that ifZ is (N, d)-additive Brownian motion,
P{Z[1, 2]N ∩ E 6= ?} > 0 iff Capd−2N (E) > 0. Going from [1, 2]N to RN

+ is standard, since the same
argument shows that for any cube[a, b] =

∏N
j=1[aj, bj ] with aj > 0, P{Z[a, b] ∩ E 6= ?} > 0 iff

Capd−2N (E) > 0. Thus, we can letaj ↓ 0 andbj ↑ ∞ to finish. With this in mind, consider

J(f) =
∫

[1,2]N
f(Zs) ds.

Then, one shows that iffε is a pdf on theε-enlargementEε of E, infε>0 E{J(fε)} ≥ c andE{|J(fε)|2} ≤
cEnergyd−4(fε). In both of these estimates,c depends on the outer radius ofE only. But {J(fε) > 0}
implies{Z[1, 2]N ∩ Eε 6= ?}. Hence,P{Z[1, 2]N ∩ Eε 6= ?} ≥ cCapd−2N (Eε) ≥ cCapd−2N (E). Let
ε → 0 and use the compactness ofE, together with the continuity ofZ.

For the harder converse, we will prove thatP{Z[1, 3
2 ]N ∩ E 6= ?} > 0 implies Capd−2N (E) > 0.

Henceforth, we assume

P{Z[1, 3
2 ]N ∩ E 6= ?} > 0, (2.1)

and letFt denote theσ-field generated by{Zr; r4 t}. Note thatF is commuting, and consider theN -
parameter martingaleM(f) given by

Mt(f) = E{J(f) |Ft}, ∀t ∈ RN
+ .
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Clearly, for allt ∈ [1, 3
2 ]N ,

Mt(f) ≥
∫

t4 s4(2,...,2)
E{f(Zs) |Ft} ds

=
∫

t4 s4(2,...,2)
E{f(Z ′

s−t + Zt |Ft} ds,

whereZ ′ is an independent copy ofZ. Therefore,

Mt(f) ≥
∫

[0, 1
2
]N
E{f(Z ′

r + Zt) |Ft} dr, ∀t ∈ [1, 3
2 ] ∩ QN

+ .

Now, supposeT ε ∈ QN
+ ∪ {∞} is any random variable such that

(i) T ε 6= ∞ iff Z[1, 3
2 ]N ∩ Eε 6= ? whereEε is the closedε-enlargement ofE;

(ii) on {T ε 6= ∞}, ZT ε ∈ Eε.

The previous inequality forMt(f) implies,

MT ε1{T ε 6=∞} ≥
∫

[0, 1
2
]N
E{f(Z ′

r + ZT ε) |ZT ε , T ε 6= ∞} dr · 1{T ε 6=∞}.

Define, for simplicity, the operatorVf(x) =
∫
[0, 1

2
]N E{f(Zr + x)} dr, to see that

MT ε1{T ε 6=∞} ≥ Vf(ZT ε) · 1{T ε 6=∞}.

Thanks to Eq. (2.1),µε ∈ P(Eε), where

µε(•) = P{ZT ε ∈ • |T ε 6= ∞}.
Hence,

E{ sup
t∈QN

+

|Mt(f)|2} ≥ E
{[
Vf(ZT ε)

]2 · 1{T ε 6=∞}
}

= E
{[
Vf(ZT ε)

]2 ∣∣ T ε 6= ∞} · P{T ε 6= ∞}
≥ [

E{Vf(ZT ε ) |T ε 6= ∞}]2 · P{T ε 6= ∞}
=

[ ∫
Vf(x)µε(dx)

]2 · P{T ε 6= ∞}.

By Cairoli’s inequality, and by the mentioned second moment estimate forJ(f), E{supt∈QN
+
|Mt(f)|2} ≤

4N supt E{|Mt(f)|2} ≤ cEnergyd−2N (f). This leads us to

cEnergyd−2N (f) ≥
[ ∫

Vf(x)µε(dx)
]2 · P{T ε 6= ∞}.
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Now, let ϕη = (2η)−d1B(0,η) be an approximation to the identity, and letf = µε ? ϕη . Then,f is a pdf
on Eη+ε and converges weakly toµε asη ↓ 0. One can show thatEnergyd−2N (f) → Energyd−2N (µε), as
η → 0, as well. We now wish to at least argue why

∫
Vf dµε → Energyd−2N (µε) asη → 0, as well. If so,

we can deduce that
P{T ε 6= ∞} ≤ c÷ Energyd−2N (µε) ≤ cCapd−2N (Eε),

which is our result but withE replaced byEε. Lettingε → 0 will lead everything to converge to their proper
limit. That is,P{T ε 6= ∞} → P{Z[1, 3

2 ]N ∩E 6= ?} (easy to see this), andCapd−2N (Eε) → Capd−2N (E)
(harder to show.) It remains to identify the limit asη → 0 of

∫
Vf dµε. But∫

Vf dµε =
∫
Rd

∫
[0, 1

2
]N
E{f(Zt + x)} dt µε(dx)

=
∫∫ ∫

[0, 1
2
]N

pt(x− y) dt f(y)dy µε(dx),

wherept(x) = (2π
∑N

i=1 ti)−
d
2 exp(− ‖x‖2

2
∑N

i=1 ti
). Now, letη → 0 to see thatf(y)dy ' µε(dy), which does

the job. �

3 Additive Stable Processes

Recall that anRd -valued processX = {Xt; t ≥ 0} is anisotropic stable processof indexα ∈ (0, 2] if

St-1. For eacht, E{eiξ·Xt } = exp(−1
2‖ξ‖α);

St-2. X0 = 0, a.s.; and

St-3. for eacht ≥ 0, s 7→ Xt+s −Xt is a copy ofX that is independent of{Xu; u ≤ t}.
The condition thatα ∈ (0, 2] is forced on us by the above conditions, and whenα = 2, X is Brownian
motion.

To perform potential-theoretic calculations, we only need estimates for the pdf ofXt; all else is done as
in Brownian motion. Here are the requisite facts. All can be found in MPP; Chapters 8, and 10, together
with proofs. Throughout,pt(x) = P{Xt ∈ dx}/dx.

By the Fourier inversion formula,

pt(x) = (2π)−d

∫
Rd

e−iξ·xe−
1
2
‖ξ‖α

dξ.

This can be used to show to that

• (t, x) 7→ pt(x) is continuous and strictly positive on compact subsets of(0,∞) × Rd ;
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• (scaling)pt(x) = t−
d
α p1(x/t

1
α );

• (unimodality) pt(x) ≤ pt(0) = Ct−
d
α , for all x ∈ Rd ;

• (isotropy) pt(x) = pt(y) if ‖x‖ = ‖y‖;

• (Blumenthal-Getoor’s asymptotics)as‖z‖ → ∞, p1(z) ∼ C‖z‖−(d+α).

An N -parameteradditive stable processZ is defined by

Zt =
N∑

j=1

Xj
tj

, ∀t ∈ RN
+ ,

whereX1, . . . ,XN are i.i.d. isotropic stable processes of indexα ∈ (0, 2]. Then, the above together with
the Brownian methods outlined earlier, can be used in conjunction to prove the following:

Theorem 3.1 (Hirsch and Song; MPP Ch. 11)If Z denotes an(N, d)-additive stable process of index
α ∈ (0, 2], thenZ hits a compact setE ⊂ Rd iff Capd−αN (E) > 0.

This is attractive, since it relatesCapβ to a stochastic process for everyβ ∈ R+ ; whenN = 1, this is
classical, but only connects probability toCapβ whereβ ∈ [d − 2, d]. One can use this to show also the
following.

Theorem 3.2 (MPP Ch. 11)SupposeZ is as above. Then, with probability one,

dim Z(RN
+ ) = d ∧ αN.

To prove this, we only need the following, which is, in fact, a consequence of Theorem 3.1:

P{Z[1, 2]N ∩ B(x, ε) 6= ?} � C ×




εd−αN , if d > αN

{log(1/ε)}−1, if d = αN

1, if d < αN

.

In fact, the constants depend only onM , and the above holds uniformly for allx ∈ [−M,M ]d.
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4 Application to Stochastic Codimension

The preceeding has a remarkable consequence about a large class of random sets. We say that a ran-
dom setX ⊂ Rd hascodimensionβ, if β is the critical number such that for all compact setsE ⊂ Rd

with dim(E) > β, P{X ∩ E 6= ?} > 0, while for all compact setsF ⊂ Rd with dim(F ) < β,
P{X ∩ F 6= ?} = 0. The notion of codimension was coined in this way in Kh-Shi ’99, but the essen-
tial idea has been around in the works of Taylor ’65, Lyons ’99, Peres ’95,· · ·

When it does exist, the codimension of a random set is a nonrandom number.

Warning: Not all random sets have a codimension.

The following is a fancy example for the above.

Theorem 4.1 (Kh-Peres-Xiao)LetB denote Brownian motion, and consider

F (λ) =
{
t ≥ 0 : lim sup

ε→0

|Bt+ε −Bt|√
2ε log(1/ε)

= λ
}

.

Then, for any compact setE ⊂ R+ , P{F (λ)∩E 6= ?} = 0 if dimp(E) < λ2, while it is1 if dimp(E) > λ2,
wheredimp denotes “packing dimension.”

All that you need to know of packing dimension, here, is that it is not Hausdorff dimension although
dimp ≥ dim. In fact, there are compact setsE ⊂ R+ such thatdimp(E) = 1 while dim(E) = 0. Multi-
dimensional examples are also possible.

As examples of random sets thatdo have codimension, we mention the following consequence of The-
orem 3.1:

Corollary 4.2 If Z denotes an(N, d)-additive stable process of indexα ∈ (0, 2], codim(Z[1, 2]N ) =
d− αN.

We now wish to use Theorem 3.1 to prove the following result. In the present form, it is from MPP Ch.
11, but ford = 1, it is from Kh-Shi ’99.
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Theorem 4.3 (MPP Ch. 11) If X is a random set inRd that has codimensionβ ∈ (0, d),

dim(X) = d− codim(X), a.s.

That is, in the best of circumstances,

�

�

�

�
dim(X) + codim(X) = topological dimension.

A note of warning: ifX is not compact,dim(X) can be defined bysupn≥1 dim(X ∩ [−n, n]d).

The proof depends on the following result that can be found in the works of Yuval Peres ’95, but with
percolation proofs.

Lemma 4.4 (Peres’ lemma)For eachβ ∈ (0, d), there exists a random setΛβ , whose codimension isβ.
Moreover,dim(Λβ) = d− β, almost surely.

Proof Let Λβ = Z(RN
+ ), whereZ is an(N, d)-addtive stable process. The result follows from Corollary

4.2 and Theorem 3.2. �

Proof of Theorem 4.3By localization, we may assume thatX is a.s. compact. LetΛβ = ∪∞i=1Λ
i
β, where

Λ1
β,Λ2

β , . . . are iid copies of the sets in Peres’ lemma, and are all totally independent of our random setX.
Then, by Peres’ lemma and by the lemma of Borel–Cantelli,

P{Λβ ∩X 6= ? |X} =

{
0, on{dim(X) < β}
1, on{dim(X) > β} .

On the other hand, by the very definition of codimension,

P{Λβ ∩X 6= ? |Λβ} =

{
0, if codim(X) > d− β = dim(Λβ)
> 0, if codim(X) < d− β

.

Take expectations of the last two displays to see that for anyβ ∈ (0, d),

codim(X) < d− β =⇒ dim(X) ≥ β, a.s.

codim(X) > d− β =⇒ dim(X) ≤ β, a.s.
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This easily proves our theorem. �
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Lecture 10

Brownian Sheet and Kahane’s Problem

The(N, d)-Brownian sheetB = {Bt; t ∈ RN
+ } is anRd -valued,N -parameter Gaussian process with i.i.d.

coordinate processes,B1, . . . , Bd, each of which has the covariance:

E{B1
s B1

t } =
N∏

`=1

(s` ∧ t`), ∀s, t ∈ RN
+ .

For instance, considerN = 2 and writeBu,v for the sheet. Then,

• for each fixedu, v 7→ u−
1
2 Bu,v is a Brownian motion;

• for each fixedv, u 7→ v−
1
2 Bu,v is a Brownian motion;

• for eachc > 0 fixed, the processBce−v,ev hasd i.i.d. coordinates each of which has covariance,

E{B1
ce−v ,evB

1
ce−u,eu} = c2 exp(−|u− v|).

That is,v 7→ Bce−v,ev is an Ornstein–Uhlenbeck process.

You can also find all manners of time-changes of Brownian motion within Brownian sheet.

1 Local Structure and Potential Theory

1.1 Independent Increments

If t< s, Bt −Bs is independent of{Bu; u4 s}. Since all is Gaussian, we check this by computing covari-
ances, all the time assuming thatd = 1, viz., for all u4 s,

E{(Bt −Bs)Bu} =
N∏

`=1

(t` ∧ u`)−
N∏

i=1

(s` ∧ u`) = 0.
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1.2 Incremental Laws

Whenevert< s, Bt −Bs is a vector ofd i.i.d. centered Gaussians with variance

E{(B1
t −B1

s )2} =
N∏

j=1

tj +
N∏

k=1

sk − 2
N∏

i=1

(ti ∧ si) =
N∏

j=1

tj −
N∏

k=1

sk.

In particular, ifs is fixed, the above, for allt< s that are close tos, is' ∑k
j=1 |tj − sj|. This is done by

Taylor expansions. In particular, locally,Bt −Bs has the same law as(N, d) additive Brownian motion.
Armed with the above estimate, one can then prove

Theorem 1.1 (Kh and Shi) If E is a compact set inRd , P{B(RN
+ ) ∩ E 6= ?} > 0 iff Capd−2N (E) > 0.

In fact, for anyM > 0, there existsc1 andc2, such that for all compactE ⊂ [−M,M ]d,

c1Capd−2N (E) ≤ P{B[1, 2]N ∩ E 6= ?} ≤ c2Capd−2N (E).

An immediate consequence of this is that codimB(RN
+ ) = d − 2N . Thus, essentially by Theorem 4.3

of Lecture 9, we have

Corollary 1.2 With probability one,
dimB(RN

+ ) = 2N ∧ d.

(Essentially refers to the fact that the2N ≥ d case needs to be handled separately, but in the latter cases,
it is not hard to show directly that the dimension isd.)

2 Kahane’s Problem

We come to the last portion of these lectures, which is on a class of problems that I call Kahane’s problem,
due to the work of J.-P. Kahane in this area.

Kahane’s problem for a random fieldX is: “when doesX(E) have positive Lebesgue’s measure?” I
will work the details out for Brownian motion, where things are easier. The problem for the Brownian sheet
was partly solved by Kahane (cf. his ’86 book) and completely solved by Kh. ’99 in caseN = 2. Recent
work of Kh. and Xiao ’01 has completed the solution to Kahane’s problem and a class of related problems,
and we hope to write this up at some point. Here is the story for Brownian motion, where we work things
out more or less completely. The story for Brownian sheet is more difficult, and I will say some words about
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the details later.

Theorem 2.1 (Kahane; Hawkes)If B denotes Brownian motion inR, and ifE ⊂ R+ is compact, then

E{|B(E)|} > 0 ⇐⇒ Cap d
2
(E) > 0.

You can interpret this as a statement about hitting proabilities for the level sets of Brownian motion, viz.,∫
Rd

P{B−1{a} ∩ E 6= ?} da > 0 ⇐⇒ Cap d
2
(E) > 0.

I will prove the following for Brownian motion. It clearly implies the above theorem upon integration.

Theorem 2.2 SupposeE ⊂ [1, 2] is compact, and fixM > 0. Then, there existsc1 andc2 such that for all
|a| ≤ M ,

c1Cap 1
2
(E) ≤ P{a ∈ B(E)} ≤ c2Cap1

2
(E).

Proof Without loss of any generality, we may and will assume thatE ⊆ [0, 1].
For anyµ ∈ P(E) and for alla ∈ R, define

Ja
ε (µ) = (2ε)−1

∫ ∞

0
1{|Bs−a|≤ε} µ(ds).

Then, for everyM > 0, there existsc such that

inf
ε∈(0,1)

inf
a∈[−M,M ]

E{Ja
ε (µ)} ≥ c, and

sup
a∈R

sup
ε∈(0,1)

E{|Ja
ε (µ)|2} ≤ Energy d

2
(µ).

(2.1)

Now, we apply Paley–Zygmund inequality:

P{a ∈ B(E)} ≥ P{Ja
ε (µ) > 0}

≥ |E{Ja
ε (µ)}|2

E{|Ja
ε (µ)|2}

≥ c

Energy d
2
(µ)

.
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Since this holds for allµ ∈ P(E), we obtain the desired lower bound.
Let {Ft}t≥0 denote the filtration ofB and consider the martingale

Ma,ε
t (µ) = E{Ja

ε (µ) |Ft}, ∀t ≥ 0.

Clearly,

Ma,ε
t (µ) ≥ (2ε)−1

∫
s≥t

P{|Bs − a| ≤ ε |Ft}µ(ds) · 1{|Bt−a|≤ ε
2
}

≥ (2ε)−1

∫
s≥t

P{|Bs−t| ≤ 1
2ε}µ(ds) · 1{|Bt−a|≤ ε

2
}

≥ cε−1

∫
s≥t

( ε√
s− t

∧ 1
)

µ(ds) · 1{|Bt−a|≤ ε
2
}

Let σε = inf{s ∈ E : |Bs − a| ≤ 1
2ε}. This is a stopping time and on{σε < ∞},

Ma,ε
σε

(µ) ≥ cε−1

∫
s≥σε

[ ε√
s− σε

∧ 1
]
µ(ds),

since all bounded Brownian martingales are continuous. Now, we chooseµ carefully: WLOGP{σε <
∞} > 0 which implies thatµε ∈ P(E), where

µε(•) = P{σε ∈ • |σε < ∞}.

Thus, by the optional stopping theorem,

1 ≥ E{Ma,ε
σε

(µε);σε < ∞}
≥ cε−1

∫∫
s≥t

( ε√
s− t

∧ 1
)

µε(ds)µε(dt) · P{σε < ∞}

≥ c

2
ε−1

∫∫ ( ε√
s− t

∧ 1
)

µε(ds)µε(dt) · P{σε < ∞}

=
c

2

∫∫ ( 1√
s− t

∧ 1
ε

)
µε(ds)µε(dt) · P{σε < ∞}.

Fix δ0 > 0 and from the above deduce that for allε small,

1 ≥ c

2

∫∫
|s−t|≥δ0

|s− t|− 1
2 µε(ds)µε(dt) · P{ inf

t∈E
|Bt − s| ≤ 1

2ε}.
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Let ε → 0, and envoke Prohorov’s theorem to getµ ∈ P(E) such that

P{a ∈ B(E)} ≤ 2
c

[ ∫∫
|s−t|≥δ0

|s− t|− 1
2 µ(ds)µ(dt)

]−1
.

Let δ0 ↓ 0 to finish. �

To prove the general result, one needs the properties of the processB around a time pointt. There
are2N different notions of ‘around’, one for each quadrant centered att, and this leads to2N different
N -parameter martingales, each of which is a martingale with respect to a commuting filtration, but each
filtration is indeed a filtration with respect to a different partial order. The details are complicated enough
for N = 2 and can be found in my paper in theTransactions of the AMS(1999). WhenN > 2, the details
are more complicated still and will be written up in the future. I will end with a related

CONJECTURE: SupposeX is an(N, d) symmetric stable sheet with indexα ∈ (0, 2] (see below.) Then, for
any compactE ⊂ RN

+ , E{|X(E)|} > 0 iff Cap d
α
(E) > 0.

At the moment, this seems entirely out of the reach of the existing theory, but the analogous result for
additive stable processes, and much more, holds (joint work with Xiao–will write up later.)

To finish: {Xt; t ∈ RN
+ } is an(N, d) symmetric stable sheet if it has i.i.d. cooridinates and the first

coordinate has the representationX1
t =

∫
1{04 s4 t}X(ds), whereX is a totally scattered random measure

such that for every nonrandom measurableA ⊂ RN
+ , E{exp[iξX(A)]} = exp(−1

2 |A| ‖ξ‖α). (Scattered
means that for nonrandom measurableA andA′ in RN

+ , if A ∩A′ = ?, X(A) andX(A′) are independent.)
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bilit és, IV (Univ. Strasbourg, 1968/1969), pp. 1–27. Lecture Notes in Mathematics, Vol. 124. Springer, Berlin.

Cairoli, R. (1971). D´ecomposition de processus `a indices doubles. InŚeminaire de Probabilit́es, V (Univ. Stras-
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