Lecture Notes on Multiparameter Processes:
Ecole Polytechnique fedérale de Lausanne,
Switzerland

Davar Khoshnevisan
Department of Mathematics
University of Utah
Salt Lake City, UT 84112-0090
davar@math.utah.edu
http://www.math.utah.edu/"davar

April-June 2001






Contents

8

9

Preface

Examples from Markov chains

Examples from Percolation on Trees and Brownian Motion

Proving Lévy’'s Theorem and Introducing Martingales

Preliminaries on Ortho-Martingales

Ortho-Martingales and Intersections of Walks and Brownian Motion
Intersections of Brownian Motion, Multiparameter Martingales
Capacity, Energy and Dimension

Frostman’s Theorem, Hausdorff Dimension and Brownian Motion

Potential Theory of Brownian Motion and Stable Processes

10 Brownian Sheet and Kahane's Problem

Bibliography

Vi

13

19

25

35

43

49

55

65

71






Preface

These are the notes for a one-semester course based on ten lectures giveEale¢hBolytechnique
Fécérale de LausanneéApril-June 2001. My goal has been to illustrate, in some detail, some of the salient
features of the theory of multiparameter processes and in particular, Cairoli’s theory of multiparameter mar-
tingales. In order to get to the heart of the matter, and develop a kind of intuition at the same time, | have
chosen the simplest topics of random walks, Brownian motions, etc. to highlight the methods. The full
theory can be found iMulti-Parameter Processes: An Introduction to Random Fi¢ldshceforth, referred

to as MPP) which is to be published Bpringer-Verlag although these lectures also contain material not
covered in the mentioned book.

The first eight lectures are introductory material and everything is covered in some detail. The last two
lectures are about potential theory of processes; in order to cover enough material, | have decided not to
cover balayage; this makes the arguments of these two lectures somewhat heuristic, but the details are all
there in MPP for those who are interested to learn more about the subject.

While | have tried to write the lectures faithfully, the heuristic “clumping” picture that | have tried to
develop in the lectures is sadly missing from these notes. My hope is that, if all else is forgotten, one theme
will be remembered, and that is the connections between our heuristic notion of clumping, aotéthe r”
played by multiparameter martingales. Some of these notions are being rigorized in joint work with Yimin
Xiao (under the general headinglotally grown random se}sas | write, but this will have to wait for now.

| am greatful to EPF-L for their hospitality, in particular, to Professor Robert C. Dalang, and for making
my visit possible as well as highly enjoyable. Also, my heartfelt thanks go to all of the attendees of these
lectures. Working with them has been a distinct pleasure for me. Last but not least, | wish to thank the
United States'National Science Foundatiofor the generous support of my work on the topic of these
lectures during the past six to seven years.

D. Khoshnevisan
June 2001
Lausanne, Switzerland
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Lecture 1

Examples from Markov chains

In these lectures, | will develop some of the foundations of a theory of multiparameter Markov processes
that is motivated by a number of problems coming from

e probability (intersections of processes, Brownian sheet, percolation on trees, Markov chains, potential
theory);

e mathematical physics (Sainger operators, tr(e}A)2 operator of elasticity, polymer measures); as
well as

e recent advances in geology (use of stable sheets in modeling rock strata instead of percolation models).

We will see that even in the study of classical stochastic processes, multiparameter processes arise as
natural objects, although these connections sometimes go unnoticed.

Some of the material of this course is based on my forthcoming bowdk-Parameter Processes: An
Introduction to Random Field$Springer). | will make the relevant portions of this book available as needed
during the lectures.

A rough outline of this course is as follows:

Introduction and motivating examples from Markov chains, percolation, and Brownian motion;

Capacity, energy, and Hausdorff dimension;

Cairoli's theory of multiparameter martingales;

Multiparameter Markov processes;
e The Fitzsimmons—Salisbury and the Hirsch—Song theories of potential;

¢ Brownian sheet and potential theory; Kahane’s problem.

Time permitting, and depending on the audience’s interests, we may discuss some aspects of
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e Probability on sigma-finite spacesely processes and random walks; the Kesten—Bretagnolle crite-
rion for Lévy processes ;

e analysis of sample paths, stochastic codimension.

Many of the techniques in these notes are based on various applications of the theory of martingales. In
the one-parameter setting, this is Doob’s theory, and in the multi-parameter setting, it is Cairoli’s. Many of
you may know that R. Cairoli was a Professor herERF-Lausanngand his theory evolved here, locally.

In the first few lectures, we will play with some of the fundamental concepts developed later in this
course, but in a simple setting, where it is easy to see what is going on, without need for theoretical devel-
opments.

1 Recurrence of Markov Chains

Let S be denumerable, and consider a Markov chgie= {X,,; n > 0} on.S. Recall that this means there
are probabilitiegP,; « € S}, andtransition functions{p,,; n > 0}, onS x S, such that

o P {Xp=2z}=1forallz S,

o P {X,, = a|Fi} = P{X, = a| Xk} = pn—r(Xg,a), Pr-a.s. foralln > k£ > 0 and alla € S,
whered = {J;; j > 0} is the filtration generated h¥ .

One thinks ofp,,(a, b) as the probability that, in time steps, the Markov chain goes frano b.
Following Poincae, Rilya, Chung, etc., we say thate S is recurrent if starting fromx € S, n — X,
hits z infinitely often, with probability one. More precisely,is recurrent if

P {Vm >0,In>m: X, =z} =1.

When isz recurrent? The classical condition abliza (for simple walks), Chung—Fuchs, etc. is

Theorem 1.1 (Folya’s Criterion) z € S is recurrent if and only ity p,(x,z) = +o0.

A rough explanation of the proof that is to come is needed. Namely, our proof uses the facthat if
hits x, it will do so several times in close proximity of one another. Thus, near the times wWhaits z,
one expects to observe an unusual contribution toZﬂ}d{Xj:m}. In even rougher terms, the random set
{n: X,, =z} is comprised of a bunch of i.i.d.—looking “clumps”. The Paley—Zygmund inequality provides
us with a key method in analysing clumping situations. It states



Lemma 1.2 (Paley—-Zygmund’s Inequality) SupposeZ > 0 is a nontrivial random variable inL?(P).
Then, for alle € [0, 1],

2
P(Z > eE{Z}) > (1 - 5)2%.

Proof Using Cauchy—Schwarz inequality,
E{Z} <eB{Z} + E(Z; Z > cE{Z})
< eE{Z} +/E{22} - B(Z > <E{(Z}).
Just solve. O

Proof of Theorem 1.1Let J,, = Z?:o 1{x,=¢) to see that: is recurrent if and only i, {Joo = 00} = 1.
Clearly,

an(x,x) < oo = E {Jy} < 400 = Jy < 400, P,-as.

n

This is one half of the result. “Clumping” says that this should be sharp. To prove it, we assume that
an(xax) = Eac{Joo} = 00,

and first notice that

E T2} <2) ) P{X;=a, X;=u}

0<i<j<n

=2 > il 2)pj-i(z,2)

0<i<j<n
< 2[E,{Jn}]".

Of course, one always hd< || > || Z]|1. The above states that a kind of converse to this holdg fer J,,.
This, together with the Paley—Zygmund inequality, shows for.all 1 and alle € [0, 1],

(1-¢)?
5
Thus, using our assumption tHat{J., } = +o0, and choosing any > 0,

Pe{Joo = +00} = lim Py (Joo > ey {Jp})
> liminf P, (J, > eE, {J,})

> 1(1—-¢)”

Py (Jp > eBp{Jn}) >
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This being true for ale € (0,1], we have shown thaP,{Jo = +oo} > 1. We need to show this
probability is1. Usually, this step is done by stopping time arguments. Instead, we make an argument that
has multiparameter extensions, and this is where martingales come in. Henceforth, we BsSline=
oo} Is positive, and strive to show that it is one.

Let us defineM,, = P, {J» = +oo|F,}, and apply Doob’s martingale convergence theorem. Indeed,
F,, increases tw,,F,, which means thalim,, M,, = 1(7=cc}s Px-a.s. On the other hand, by the Markov
property,M,, = Px, {Jo = +oo} (why?) Therefore, on the event th&t, hits = infinitely often (i.e., on
{Joo = +0}), M), = P, {J = +o00}, infinitely often. In particularP,-a.s. on{J = oo},

1= 1=} = lim M,, = P, {Joc = 00}.

This finishes our proof. O

SOMETHING TO TRY. Show that there are constardts such that for alp > 1 and alln > 1,
HJan < CpHJnHL

Thus, {J,, }»>1 forms what is called a uniformly hypercontractive family of operators on the undeigying
probability space. Hypercontractivity is known to be a powerful property in analysis.
(HINT. By Jensen’s inequality, it suffices to do this for integers 1.)

2 Recurrence for Inhomogeneous Markov Chains

This subsection may not be in the lecture and can be omitted on first reading.

Recall that a proces§$X,,; n > 0} is aninhomogeneous Markov chaif P, {X,, = a|%F,} =
PA{X, = a|Xm} = pman(Xm,a), whenn > m. Thus, the only difference between these and regular
Markov chains is that the transition functions, ,,, need not satisfy,, ,(a,b) = po n—m(a,b).

SOMETHING TO TRY. If X is an inhomogeneous Markov chain Snthe procesy” = {(n, X,); n > 0}
defines a homogeneous Markov chaini S. The procesy” is Doob’sspace-timgrocess.

What happens when is recurrent for an inhomogeneous Markov ch&i? Perhaps not surprisingly,
the answer is more complicated, although similar ideas as our proof of Theorem 1.1 still work. Namely,
recurrence still occurs by clumping. However, due to the inhomogeneity of the chain, the clumps need not
be evenly distributed. In more mathematical terms, we need to consider a weighted version of the number
of times that the chain hits. Due to the absence of 0-1 laws, we also revise our definition of recurrence
and say that is recurrentif P, {.J, = oo} > 0, whereJ,, was defined in the previous subsection.
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Supposing that is a subset ofZ = {0,1,...,}, we writex € P(F) meaning that{u,; i € F'} are
probabilities:y.; € [0,1] and) ;. u; = 1. By theenergyat x of such au:, we mean the functional

Ea) = Y %M 1k

Po,; (z,2)>0

where, we recallp,, ;'s are the transition functions of the inhomogeneous Markov chain
Thecapacityatz of F'is defined by Gauss’ minimum energy principle. Namely,

. —1
C.(F) = f &, ,
(F) = [ inf &)
whereinf @ = +00, and1 + oo = 0. Then, we have the following quantitative estimate that is interesting
even for homogeneous Markov chains:

Theorem 2.1 Forall F C Zand allz € S,

SCFNG,) <P {Ine F: X, =2} <Cu(FNG,),

whereG, = {i > 0: P,[X; = z] > 0}.
In particular, z is recurrent if and only ifimy .~ C.({N,N +1,...,}) > 0.







Lecture 2

Examples from Percolation on Trees and
Brownian Motion

1 Proof of Theorem 2.1

The characterization of recurrence follows from the asserted inequalities, upon noticing that wherever
F', C(F) < C(F"), sothatlimy C({N, N + 1,...}) exists. It remains to verify the two inequalities.
Foranyu € P(F N G,), define

_ {X =z}
lu= Z P {X; =2} 1"
1€Gy
Clearly,P,{X; = x} = p, ,(x,z), and
E.{I,} = 1. (1.1)

This functionall, is a normalized, weighted, version df, in our proof of Theorem 1.1.1. With this in
mind, we estimate its second moment in a similar way as we did thaf.dflamely,

E{IQ}<QZZ {X X _x},ui,uj

’LJGG vaxxpOj(‘rx)
i<j

= 289@(“)7 (12)

sinceP,{X; = X; = z} = p,,(z,2)p, ;(z,z) if i < j. Eq. (1.1) and the above combine, thanks to the
Paley—Zygmund inequality [Lemma 1.1.2], to show that fora#t P(F N G,),
P{IneF: X, =2}> [28x(u)]_1.
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Optimize over allu € P(F) to derive the first inequality of Theorem 1.2.1. So far, we have followed our
proof of Theorem 1.1.1 but witti,, replaced byl,,. For the other bound, we need to do more work, since
not all weightsy, work.

For this bound, we can assume, without loss of generality, Rh&fn € F : X,, = z} > 0. Let
T = inf{n € F : X,, = x}, whereinf @ = +oo. Then,T is a stopping time and our assumption is
equivalent taP,{T" < oo} > 0. In particular,u € P(F N G, ), where we define

pi =P T =i|T <0}, Vi=0,1,2,....
We consider the following martingale based yfor this .
M, =E. {I,|F.}, Vn > 0.
Clearly,

|y BeAXi=ol8)

M
" P () '

1€Gy

Do (xv x) '

1€Gy:
>n

. Z pn,i (Xm x)

2 po(o)
>n

pn,i (x’ x)
2 ) M e
1€G: 1O\
>n

i

v

In particular,

Py (T, )
Mrlep > ——— i " Lrcoo)-
e zez:Gz Do (T, T) 1 HT<e0}
i>T

Taking expectations, and using the special form gives
E AM7p;T < 0o} > Ex(p) - P AT < o0}
It remains to show that the left hand sidd iBut,
Eo {Mr; T < 0o} < lim inf By {Mrn,}
= lim inf I, { Mo}
= 1.
Justification: the first inequality is from Fatou’s lemma, the second equality holds by Doob’s optional stop-

ping theorem, and the third is from Eq. (1.1) above. This concludes our proof. O
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Figure 2.1: A typical ancestral trde

2 Lyons’ Theorem

Consider a finite rooted trde, viewed as an ancestral tree, and with raotAn example of such a tree can
be found in Figure 2.1, where gives birth to two childrenq, anda,; a; gives birth toa,, , o, ande,,,
while sy gives birth toa,, anda,,, who give birth to- - - .

The indices are chosen in a natural way, as is often done, to keep track of the ancestry of any given
individual on the tree. In fact, this orders the vertice$ of

Every edge: in the tree is assigned a random weighte), and we suppose thétv(e); e € Edge(I")}
is an independent collection of random variables. In the percolation seit{ay.c {0, 1}; we can think of
e as ‘operf whenw(e) = 1, and ‘closed when w(e) = 0.

We will assume that the weights(e) are i.i.d., to make our presentation simpler. Thus, there exists
an inherent parametegs, which is the probabilityp = P{w(e) = 1}. To emphasize the dependence on the
parametep, we write P, for IP.

Now, we define percolation dhn.

If 3is some vertex i, we writea < (3 for the event that for all edges, that linka to 3, w(e) = 1.

If Ais a collection of vertices, we write < A for the eventugca{a <~ 3}.

Let OT" denote the collection of all vertices Inwhose graph distance fromis maximal. (In Figure
2.1,0I"' = {wy;1} where the indices, j andk range over the valuels— 4, as allowed by the the figure.) We
then say thapercolation occurs on the finite trdg if o < OT".

Let us first look at a finite rooted trdewith root «, and let its depth b®.! [In Figure 2.1,D = 3.] We
can label, from left to right, the vertices &1 to get verticed, ..., N, whereN is the number of vertices
in OI'. Thus, in Figure 2.1, we are relabeling,,, o, 5, . - . , (t,, , 0y, @S Vertices throughN = 13. For
each of theséV vertices, we can define @-dimensional random vectoy;, that is comprised of all the
random weightsiw(e), for e’s that link « to vertexi in OT'. Then, it is easy to see thaf;,..., Xy is an
inhomogeneous Markov chain, as long as we delipe= x under the measui®,, wherez takes its values
in the space of all possible configurationsi@fand0’s corresponding to the rays fromto dT". In summary,

'Recall thatD is the number of edges needed to go from the root to the boundary.
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Figure 2.2: The ancestral tree of Figure 2.1, with an attached fictitious first ray

x e S =0, 1}D. Pictorially, this means that fak to be an inhomogeneous Markov chain, we need to
include an extra fictitious first ray that goes franto oT" with no interference with the other rays.

Figure 2.2 shows what we do to Figure 2.1 in order to achieve this.

Now, it is easy to see thaf is an inhomogeneous Markov chain on the state spaee{0, 1}P.

We are interested in probability of percolation, which is

P{a—0l'} =P, {Inec {1,...,N} : X, =z},

D times
—
wherez = (1,...,1).
Next, we compute the transition probabilities of this chain. Note thatcfer (1,...,1), as given,

Py, () = pP, since the above is just the probability that the ray leading tg-ifevertex oroT', counting
from left, is all open. On the other hand 0if< £ < j, pi j(x, x) is the probability that both rays leading to
k andj are all open. This probability is, ; (v, z) = pP—Ik4il wherek A j stands for the greatest common
ancestor of and;,? and wherdv| denotes the depth of any vertexIn this way, we obtain

Po,; (9571’) _ oIkl
Dy ; (z,)
SinceG, = OI', we can combine all this with Theorem 2.1 to obtain

—1
[ ueglgr) ZZ P ‘k)\j‘”k“ < Pfla—dl't < [ inf ZZ p ‘k“‘,uk,u

I)
1<k<j<N HEPOD) | TN

-1

*This is a vertex on the tree, and is not to be mistaken with the nuinbef. For example, in Figure 2.%y,,, A a5, = o .
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The notationk < j is awkward, since it depends on a linear order of the bounadrfy;, afhich makes no
sense when we taketo be an infinite tree. So, it is more convenient to use the inequalities:

320 S22 <2,

ISE<jSN  1<k<j<SN  1<k<j<N

to get

-1

-1 .
f kA j] } <P o) < 2[ nf < —|kAj] }
2, dnt 2 2 | S Bloco ot} <2 Il <D0 0 ns

When the tree is an infinite tree, the boundaly still makes sense: it is defined as the collection of all
infinite rays emenating fron. It should be checked that whdnis a finite tree, this agrees with our
previous definition. Moreover, the notion of percolation still makes sense, as well. Namely, we write
a « OI' to mean that for all rooted finite subtreEs C T' with root o, o <+ OI". It turns out that one

can take “hydrodynamical limits”, and I&t become infinite. In this way, we get an improvement, due to
Benjamini and Peres, of

Theorem 2.1 (Lyons) Consider an infinite, locally finite, rooted trdewith root « as above. Then, for any
€ (0,1),

inf // =721 i (do) (dy)]flgpp{aﬁar}gz inf // =172 i (do) (dv)]il.

;LEfP or) ;LEfP or)

In particular, there can be percolation iff there exists a probability measureon oI', such that
[ ool u(do) p(dy) < +oo.

SOMETHING TO TRY: Check that the first inequality holds even if we remove the con8tafitint: comput
the first two moments of = [ 1(,..,} + Pr{a < o} u(do), directly.

The above can be used to find critical percolation probabilities, as well as critical exponents, when the
tree is regularly behaved. For exampldliis k-ary (or, more generally, radially symmetric);.dhat solves
the optimization problem above is uniform measurelgrand this makes exact calculations possible; cf.
Lyons (1990).

3 Brownian Motion
Next, we study another example of martingale techniques for clumping analysis by deriving a deep theorem

of P. Lévy on the curve of @-dimensional Brownian motiorf3 = {B(t); t > 0}, with B(0) = 0. Namely,
we will show the following:

11



Theorem 3.1 (P. Levy) The random seB(R, ) C R? has positived-dimensional Lebesgue’s measur

and only ifd = 1.

Whend = 1, this follows from the continuity of3, and from the fact that it is not a constant function.
Thus, it suffices to reduce attentiondo> 2 and show that for any interval, U] where0 < L < U < oo,

|B([L,U])| = 0, almost surely. To see what this has to do with clumping, we first note that thank to Fubini’s
theorem,

E{B(IL, U]} = /Rd Pla € B([U, L])} da, (3.1)

where| o | refers to Lebesgue’s measure. Thus, the questiowlet isP{a € B([L,U])} > 0?” Now, it
should not be surprising to see clumping at work: wiiifg3(¢) ~ a} is small for any givert, P{B(s) ~
a|B(t) ~ t} is not. So, for{t € [L,U] : B(t) = a} to have any chance of being nonempty, it would have
to be made up of clumps. Temporal homogeneityBosuggests that these clumps are, moreover, evenly
distributed. All of this suggests looking at the random variable

U
Je(a) —/L 1{B(t)—a|<e} 95, (3.2)

wherea € R? is fixed, and we think of as small.

12



Lecture 3

Proving Levy’s Theorem and Introducing
Martingales

In this lecture, I will prove Theorem 3.1, and then, we will start our discussion of multiparameter martingales
in earnest. For the latter part, | will pass out parts of my book, for the formeplease read on.

1 Proof of Levy’s Theorem

Here is one estimate that follows easily from the form of the Gaussian density function.

Lemma 1.1 For anya € R?, there exists positive and finite constatts= C(a, U) andCy = Cs(a,U),
such that for alls € [0, U],

cl(% A 1)d < P{|B(s) —a| <} < 02(% A 1)d.

Consequently, sincd. is strictly positive, there exists nontrivial’s = Cs(a,L,U) and Cy =
Cy(a, L,U), such that for all sufficiently smadl > 0,

Cae? < E{J.(a)} < Cye?. (1.1)

13



Next, we estimate the second momenvgfa), viz.,
U U
B{|J. (a)%} = z/L / P{B(s) —a| < e, |B(#t) — a| <} dt ds
U U
< z/L / P{|B(s) —a| < ¢, |B(t) — B(s)| < 2¢}dt ds
U U
< 2/L / P{|B(s) — a| < c}P{|B(t — 5)| < 2¢} dt ds
U
<28(1.@)}- [ B{IB(w) < 2} du
0
€d Y 2—6 4 U
<2050 /O ( /\1) du.

Vu

Here is where things get interesting. Whep 3, the behavior of the above integral is like a constant times
2. But, if d = 2, it behaves like:? log(1/¢). Finally, if d = 1, the integral behaves like(times a constant).
All considered, we get

€2, ifd=1
E{|J:(a)*} < C5 x { e2log(1/e), ifd=2.
gdt?, if d>3

Combine this with Eqg. (1.1) and the Paley—Zygmund inequality [Lemma 1.1.2] to get
P{ '[nf |B(t) —a| <e} >P{J.(a) > 0}

te[L,U]
[E{Je(a)}]”
~ E{|J:(a)?}
2 1, if d=1
> Fi x < [log(1/e)]~t, ifd=2. (1.2)
gd—2 ifd>3

| claim these bounds are sharp, up to multiplicative constantsF¥Léenote the filtration of3, and assume
it satisfies the usual conditions. Let us consider

M; = E{ /LL+U 1{|B(s)—a\S2€} ds ‘ Ft}-

This is almost the same & J»- (a)|F:}, but we have increased the upper limit of integration for some
elbow room; you will see why shortly. Clearly,

L+U
M, > / P{B(s) —a| < 2¢|F,} ds, Vi€ [L,U].
t

14



You may be wondering about the null sets. If so, that is good. However, there is a general fact about Brown-
ian motion that states th&l{ Z|F; } can be chosen to be continuous. So, the above holds simultaneously for
all t € [L, U], outside one null set. We go one more step:

L+U
M= [ B{IB(s) — al < 2250} ds X Loie-ai<e) vt € [L,U)

t
L+U

> / P{|B(s) — B(t)| < | Ft}ds x 1yp@)—aj<e} vt € [L,U]
t
L+U

= / P{|B(s —t)] < e}ds x 1) —al<e}- vt € [L,U]
t
U

> [ BB < ehaux 1ga0-co. vt € [L,U].

The point is that the above integral is nonrandom, and is an object we have seen beford: -wheit is
of ordere?, whend = 2, itis of ordere? log(1/¢), and whend > 3, it is of orders?+2. So, there must exist
some constant’s = Cs(a,d, U, L), such that

£, ifd=1
My > Cely|B(t)—a|<c} X § €2 log(1/e), ifd=2, vVt € [L,U].
gdt2, if d >3

(We needed the extra “elbow room” to gét € [L,U] in the above.) Now, lef” = inf{t € [L,U] :
|B(t) — a| < €} to see that

g, ifd=1
E{Mr1ircooy} > CeP{ inf |B(t) —a|<e} xS e’log(l/e), ifd=2.
te(L,U] deo :
gt if d>3

)

Thanks to the boundednessdf, and by Doob’s optional stopping theoreB{,M7;T < oo} = E{J-(a)},
which is estimated by Eqg. (1.1). Combining this and Eq. 1.2 we get
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Theorem 1.2 For anya € R?, there exists constant$; and A,, such that for all: > 0 small,

A1k(e) <P{ inf |B(t) —a| <e} < Azk(e),

te[L,U]
where
1, ifd=1
k(e) = ¢ [log(1/e)]7t, ifd=2.
gd=2, ifd>3

In particular, sinceB is a continuous random function, we can det— 0 to see that wher > 2,
P{a € B[L,U]} = 0 for all a, and we get Theorem 3.1 from integrating tfis].

2 Review of Martingales

Recall thatF¥ = (Fy) is afiltration, if F,’s are sigma-fields such thdy C F5 C ---.
A stochastic proces¥ = (X}) is adaptedto the filtrationd, if for eachk, X}, is Fi-measurable.
A processM = (Mj,) is amartingale if

e for eachk, M, € L'(P);
e M is adapted; and
o forall k, E{ M1 | Fr} = My, a.s.
Check that the third part is equivalent to: for al>> m, E{M,, | F,} = M,, a.s.

Proof We can assume that > m. Otherwise, there is nothing to prove. Siri€g 2 F,,, E{M,,, | F,.} =
E{E{M,, | Frn-1}|Fn} = E{M,,—1 | F,.}. Proceed by induction. O

Doob’s Martingales are those of the form/;, = E{Y | F,}, whereY € L!(P).

A stopping timel” is aN U {oo }-valued random variable such that for JI(T" < k) € F.
The stopping time property always holds with respect to some filtr&tiaf course.
If T is a stopping time, we define

SFTZ(AE\/kgjkI AN(T < k) € Fy, Vk).

Notes(i) Fr is a sigma-field; and (ii) botd” and X717, areFr-measurable.
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Theorem 2.1 Suppos&” € L' (IP) and M}, = E{Y|F,} for a given filtrationT. If T is a stopping time,
Mp =E{Y |Fr}, on (T < o0).
Proof For all A € 7,

E{Mp; AN (T = k)} = BE{M}; AN (T = k)}
= E{E(Y|F); AN (T = k)}
=E{E(Y; AN (T =k)|F)}, sinceAN (T = k) € Fy,
—E{Y;AN(T = k)}
=E{E(Y |Fr); AN (T =k)}, sinceAN (T = k) € Fr.

Sumoverallk = 1,2, -- to see that
E{MT 1{T<oo}; A} = E{E(Y‘H:T)l{T<oo}; A}, VA € Frp.

SinceE(Y [I7)1{r<o0y @and Mr1ir. .y are bothFr-measurable, this completes our proof; cf. “Notes”
above for the latter remarks. O

Theorem 2.2 (The Optional Stopping Theorem)Supposel; < T, are bounded stopping times, add
is a martingale, both with respect to the same filtratibnThen,

E{Mr,|F1,} = Mr,, a.s.
Proof “Bounded” means that there exists a nonrandeém- 0, such thatl; < Ty < K. Note that
Vi< K : M; = B{Mg 1|5}
Thus, by Theorem 2.1,

Mz, = Z M;jlr,—jy = E{Mg 1[I}, a.s.
J<K

SinceFr, O Fr,, E{Mr,|Fn, } = E{Mk+1|Fr }, a.s. Another appeal to Theorem 2.1 does the job.

3 Doob’s Maximal Inequalities
We can now state and prove Doob’s martingale version of Kolmogorov’s inequalities for random walks.

Theorem 3.1 SupposéV/ is a martingale with respect to a filtratioi. Then, for all\ > 0,

1
P{max [M;| > A} < —E{|M,|;max|M;| > A}.
i<n A j<n
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Proof Let 7' = inf{k : |Mj| > A} whereinf @ = oco. This is a stopping time, anfi A n is a bounded
stopping time.
By Theorem 2.2E{M,, |Frrn} = Mrr,. Applying Jensen’s inequality, we deduce that a.s.,

E{|Mn| |3~T/\n} > |MT/\n|-

Consequently,
E{|M,|;T <n} >E{|Mr|;T <n} > A\P{T < n},

giving the result, in a slightly different form. O

Corollary 3.2 (Doob) Forall p > 1,

E{max [M;[7} < (p o) E{ M [},

while

E{max [M;]} < (- ){1 + E{| M| In4 | My},
whereln () = In(z V 1).
Proof We use integration by parts: for any random variable- 0, and for allp > 1,

E{ZP} = p/ooo MNTIPLZ > A} d).
Apply this to Z = max;<,, |M;| to see that
E{max [M;l"} = p/ooo AP P{max [Mj] > A} dA

< p/ NP72RL| M, |5\ < rjr1<ax\Mj\}d)\
0 sn

man§n|M]'| g -
p {|M| /O ¥2dx}  (Fubini theorem

)IE{]M |- max\M P11,

By Holder's inequality,E{|M,, | - max;<, |M;|P~'} < [|M,]l, - || maxj<, yij”g—l. The result follows
from this wherp > 1. For thep = 1 case, see Chapter 1 of MPP. O
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Lecture 4

Preliminaries on Ortho-Martingales

Before our general discussion of ortho-martingales, let us look at a simpler, more concrete, class of multi-
parameter “martingales”; these first arose in Cairoli (1969), and have resurfaced in many works, including
those of Cairoli and Walsh, several times since, and for a number of different reasons.

1 Two Parameters Doob-Type Ortho-Martingales

SupposeF! andF? are two one-parameter filtrations. To be sure that we are getting the indices right, we
stress that this notation means, in particular, fat= (1,7} ...) andF? = (F%,53,...) are two ordinary
filtrations on the same underlying probability space.

By atwo-parameter Doob-type ortho-martingalee mean the process
My =E{Y |FEVF2Y, VYa,m>1,

whereY € L'(P).
We should recognize that

Mn,m = E{MnJrl,m ‘ 3'711 \4 gfrzn}
= E{Mpm+1 | 5t711 N 3%1} (1.1)
= E{Motimj | Fn V T},

for anyi,j > 0. This is why we call)M/ a Doob-type ortho-martingalesince an ortho-martingale is to be
thought of as amrthant-wise martingalei.e., a martingale in each parameter.
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Lemma 1.1 For all p > 1, and for all integersh, m > 1,

E{ max\M”]p} < (pﬁ ) E{|Y'["}.

Jém

Proof If we fix ¢, j — M; ; is a 1-parameter Doob martingale; cf. Eqg. (1.1). Therefore, by Doob’s inequality
(Corollary 3.2, Lecture 3),

E{max [M;[} < (p ) E{|MinlP},  Vi>1.

Another application of Eq. (1.1) reveals that- max;<,, |M; ;|? is a 1-parameter submartingale (that |
have not defined in the lectures, but you know about.) Therefore, we can apply Doob’s inequality again to

see that
p
E{max max |M; ;|"} < (L) E{max | M, ., |},
p—1 j<m ’

i<n j<m

which, together with the previous display, proves

2p
E{max max\M ilP < (L> {|Mml},
i<n j< ’ p—1 ’

which has the desired result, thanks to Jensen’s inequality. O

What about the = 1 case?

Lemma 1.2 For all n,m > 1,

e 2
Ef{max [Migl} < (=== )" |2+ E{ Mol 0y [Moml} ]
i<n e—1

j<m

For a proof, see Ch. 1 of MPP.

Finally, we have
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Lemma 1.3 Forall n,mm > 1 and all\ > 0,

e

1
Blma (M) 2 0} < 3 (S5 [0+ B{UManl I [ Mo}

Jj<m

Proof Sincemax;<,, |M; ;| is a submartingale for eagh> 1, by Doob’s maximal inequality,

1
P{max ’sz’ > )\} < _E{max ‘Mnj’},
i<n ’ A j<m ’
j<m

and another application of Doob’s maximal inequality does the job; cf. (Corollary 3.2, Lecture 3).

2 Two-Parameter Convergence Theorems

Continuing with our discussion of the previous section, we now address the question of when, if ever,
lim M,, ,,, exists.

One can imagine many different notions of limits in the present 2-parameter setting. Here are two
important ones:

e Topological limits. We say thatM has atopological limit (at infinity) if with probability one,
limy, y—o0 My, m €Xists. That is, outside one null set, we caml@ndrm go to infinity in any way we
like and still M, ,,, converges. This is, indeed, a topological limit, as can be argued simply as follows:
ConsiderR? /0R?, i.e.,R? where we identify all points on the axes with each other. Endow it with the
relative topology, and then, one-point compactify it to seeliaf ,,,_... meangn, m) converges, in
the latter topology, to the added compactification poirtssay.

e Pathwise limits. In contrast with topological convergence, pathwise convergence is a probabilistic
notion. A collection of pointgiy, j1), ..., (ix, jx) IS anincreasing pathf i; < --- < iy andj; <
--- < ji. This extends to the case where some ofitfeeandj,'s are infinity, as well. With this in
mind, we say that our two-parameter orthomartingdlehaspathwise limitsf for every increasing
path (i1, j1), (i2, j2), . . . there exists a null set outside whitim,_. ., M;, ;, exists. Both the limit,
here, as well as the null set may depend on the increasing path.

0:Je

Remark 1 Check that any real-valued functiofin,m) has topological limits ifflim,, f(n,m) (and
lim,, f(n,m), resp.) existainiformlyin m (in n, resp.)
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Remark 2 If M is non random, the existence of a topological limit at infinity is equivalent to the existence
of pathwise limits at infinity (i.e., when the increasing paths go away from the axes in all directions.) For
nonrandom processes, this is not true, in general, since there are uncountably many increasing paths.

Theorem 2.1 The process/ always has limits. Moreover, its pathwise limit at infinity@i§Y” |2 v 32},
whereF:, = V;>1F%. Finally, it has a topological limit at infinity ifE{|Y | In Y]} < oc.

Proof The existence of pathwise limits is easy: (&t j1), (i2, j2), . . . denote any increasing path to deduce
that ¢ — M;, ;, is a uniformly integrable, one-parameter martingale with respect to the one-parameter
filtration &, vV ¥7 . Thus, by Doob’s theorem, it convergesBpY |57, v 52}, a.s. in and.' (P).
Next, we supposéf € Lln; L, and aim to prove topological convergence. Netr) = x1n(z)
(z > 0) and note that
V(o —y) <[U(@) - V(y),  Va,y>0.

This requires a few lines of calculations, but also follows from convexity consideration; cf. Ch. 1 of MPP.
The preceeding discussion, together with Lebesgue’s dominated convergence theorem, imply that when
YeLlng L,
Aim B{¥(|M;; —Y|)} =0.

%,J—00

In particular, there exists a sequence of constants; co < ..., such thafim;_., ¢; = oo, and
E{W(c;|M;; - Y|} < 1.

(Why?) Now,c;{M; ; — Y} is also a two-parameter Doob-type ortho-martingale. Thus, we apply Lemma
1.3 to the latter and deduce that for ali> 0,

1 1
P{ sup IM; ; — Y| > A} < —=supsup E{¥(c;|M;; —Y]|)} < < —
CmA j>m i>1 )\
jZm
The above goes to zero, as— oo, and this is enough to show that for alt> 0,
limsup sup [M;; — Y| <A, a.s.
m—oo  >1
j>m
Since the above holds for all > 0, this proves our result. O
3 Further Discussion
In general, we havéV one-parameter filtrationsf!, ..., ¥V and say that arV-parameter process is an

ortho-martingale(with respect to these filtrations) if
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o MisF} Vv---vF -measurable for all € NV;
e forallt € NV, M, € L}(P); and
e whenevert; > s; foralli =1,..., N (writtent 3= s),

E{M,|F} V---VFN} =DM,  as.

N

We, then, have the following, whose proof is based on ideas that we have already seen in the simpler context
of two-parameter Doob-type ortho-martingales.

Theorem 3.1 (Cairoli) Maximal Inequalities: Let M be an/N-parameter ortho-martingale. Then,

E{ max |M, [P} < (L)N”E{Wt P}

st s “\p-—-1 ’
ifp>1.1fp=1,
e \N N
E{ max M|} < (==5) [N+ E{ Mol [62) VY]

Convergence Theoremi$ 1, is uniformly integrable for alt € NV, M has pathwise limits a.s. and in
L*(P). Moreover, its pathwise limit at infinity B{Y |F1 V- - FN 1. If sup, E{| M, |[Ing [ M[]V 1} < +oo,
M has topological limits, a.s. and if! (P).
4 Random Walk Examples

4.1 Additive Random Walks

SupposeX andY are two independent mean 0 random walks, and definadtitive random walkS, by
Snm = Xn + Yo, Vn,m > 1.

Let 7! and3? denote the filtrations generated AyandY’, respectively. That is,

Then, it is easy to see thatis a two-parameter ortho-martingale.
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4.2 Multi-Parameter Random Walks

SupposeX; ; are i.i.d. mean zero random variables. Taedom walkassociated with th&(’s is
Sn,m = Z Xi,j7 Vn,m Z 1.
i<n
j<m
Now, we need some filtrations. Let
Fl=0(Xp;£<i,j>1)
3"]2 =o0(Xjpi>1,0<7).
Then, it is not hard, and very instructive, to check that for any. > 1 fixed {S; ;i < n, j < m}isa

two-parameter Doob-type ortho-martingale with respect to these filtrations. In;jg@tn,m is a reversed
“ortho-martingale” (later) with respect to the reversed filtrations

Ri =0(Xpj; £>id,5>1)
RF = o0(Xig i > 1,0 > j).

This, and the reversed analogue of Theorem 3.1 for ortho-martingales, together, prove the interesting half of
Smythe’s law of large numbers

Theorem 4.1 (Smythe)If X;; € LIn, L,

S, .
lim —™ =E{X;:}, as.andinL'(P).

n,m—oo NM

Moreover, if(n, m) — -1 Syn.m has topological limits at infinity, theX; ; € Llny L.

nm

See MPP and Cairoli and Dalang (1996) for complete pedagogical proofs, as well as related results .
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Lecture 5

Ortho-Martingales and Intersections of
Walks and Brownian Motion

Having motivated orthomartingales somewhat, we proceed in earnest, cookbook style.

1 Ortho-martingales: The Recipe

Ingredients

1. An N-parameter processVl; t € NV };

2. N one-parameter filtratior®?, ..., ¥, such that for each= 1,..., N, t®) — M, is a martingale
with respect t@F”.

For instance, tak&' = 2: thenM is a martingale (with respect t5' and3?), if
e forall j, i — M, ; is a martingale fof!; and
e foralli, j — M; ; is a martingale fo.
Example (revisited) Let X' and X? be twoindependenimean zero random walks, and consider

?zl :U(Xllvazl)vo—(X%’X%’)
52 = o(X},X3,.. ) Vo(XE,..., X2).

Then,(n,m) — X} + X2 is a two-parameter ortho-martingale &t andJ>.
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SOMETHING TO TRY: Show that(n,m) — X} - X2, is an ortho-martingale if! and X? are independe
martingales.

Example (revisited) SupposeX; ; are i.i.d. mean zero random variables and define the 2-parameter random

walk S by
Som = _ Y Xij.

i<n j<m
Then,S is a 2-parameter ortho-martingale with respect to

Fl=0(Xp;: £<i, j>1)
Fi=0(Xig: i>1,0<7).

Henceforth, when, t € RY and we writes < ¢, we mears(d < ¢(®) for each coordinate=1, ..., N.

SOMETHING TO TRY: Check that whenV/ is an ortho-martingale and when< t are both inN?, then
E{| M, |P} < E{|M, P} for p > 1. (Hint: Jensen’s inequality.)

Now, we come to ourn maximal inequalities; they are proved working one parameter at a time, just as
the Doob-type examples that were worked out earlier.

Theorem 1.1 (Cairoli's Inequalities) If M is an N-parameter ortho-martingale indexed by’ say. Then
E{max [M;["} < Cp vE{| M|’}
Efmax M|} < Coy [N + E{[M; |} [243]}]

Cl,;\\f—l [

P{max | M| = A} < (N = 1)+ E{[M IV M, WA >0,

where

CpN = (pL)Np and CLN:( ‘ )N.

There is a topological convergence theorem, as well. It is proved by working one parameter at a time, as
in our example from last week, viz.,
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Theorem 1.2 If M is an ortho-martingale, and up, E{|M;|In? ~* |M;|} < +o0, then the topologic

limit lim,_ . M, exists, a.s. and id.(P).

The analogue of pathwise limits, at this level of generality, is tricky. Instead, we will introduce sectorial
limits when N = 2. The remaining details can be found in MPP.

Henceforth,V = 2, in this section.

The two sectorial limits, when they exist, of a two-variable functiof are defined by the ordered
limiting operations: lim,, o lim;, oo f(n,m) and lim,, . lim, . f(n,m). In general, even when
they exist, they need not be equal. When both sectorial limits exist and when they both agree, we write
limy, 00 f (1, m) for their common value, and calltihe sectorial limit of f.

Theorem 1.3 If M is a uniformly integrable ortho-martingaléim;.... M; exists a.s. and il.2(P).

Proof for N = 2 By uniform integrability, M; o, = lim;_., M; ; exists a.s. and ii! (P). We now make
two claims:

Claim 14 — M,  is uniformly integrable.
Clam2i+— M;  is anF'-submartingale.

To prove Claim 1, note that by Fatou’s lemma, foral 0,

E{|M; oo |5 | M; 00| > A} < jlifgoE{\Mi,j\; |M; 5| > A} < supE{|M; ;1[5 | M; ;| > A},
- i

which goes td) as\ — oo, uniformly ini. Claim 2 is proved similarly. Indeed,

E{Mi+1,00 |57} < lim inf B{ Mi 1,5 |57} = Jim Mg = Mico-

In particular, M, ., = lim;_.. M; o exists. Of course)M, ., = lim;lim; M; ; is the first sectorial limit,
which we now know exists. Similarly)/,, ; = lim; M, ; exists a.s. and i.}(P), which leads to the
existence of the second sectorial limit2, , = lim; lim; M; ;.
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Our job, now, is to check that/}, . = Mgoyoo. But for anyk > 1,
E{ML . | T4} <liminfliminf B{M; ; | T3}
’ i—0o0  j—00 ’

= lim lim M ; (by the ortho-martingale property)

1—00 J—00

= M}, .

Let k — oo to see that
E{M% o | V& Fi} < M2,

,00°

But M, ., is alwaysV,JF}-measurable. SQM(}QOO < M?2 which, by symmetry, shows that the two

00,00

sectorial limits agree, a.s. O

2 Applications to Intersections of Simple Walks

Our next goal is to apply the maximal inequality for ortho-martingales to a result about the intersections
of independent Brownian motions. To illustrate some of the moment estimates, we first turn to a discrete
version, which is simple to work out, although it does not really need ortho-martingale theory.

Let X! and X2 be two simple symmetric random walksZ, and consider

Jﬁnn ::EE: 2{: 1{)(3 ::};?}7

i<n j<m

which is nothing other than the number of times the trajectories of the random funéffoaad X ? inter-
sect.

How big isJ,, ,? Its mean is easy to estimate. Recall, from the classical local limit theorem, H)at if
is the simple walk irZ¢,

P{So, =0} ~ Cd(QTL)_%, asn — oo, and
2.1
sup P{S; = a} < Cdk*g, vk > 1. (2.1)
a€Za

Of courseP{Sa,+1 = 0} = 0, for all n, anda,, ~ b, means thatim,, a,, + b, = 1.
Now, we can estimat&{J,, , }, sinceX} + X? has the same distribution &$, ;. Thus,

E{ o}~ Cy 3 i+ )78,

i<n j<n
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asn — oo. The above has the same asymptoticﬁl’b§1"(x+y)‘§ dz dy which can be computed explicitly.
However, it is more elegant to observe that

_d _d
/[1 P(m—l—y) 2dxdyx/Z€R2: llz||” 2 d=

1<zl <en

cn d
= C/ w2t dw,
1

wherex means ‘has the same rough asymptotics as’. More preciéely, g, meand) < liminf,, f,/g, <
limsup,, fn/gn < oo. The last line follows from calculating in polar coordinates. As usual, constatts
etc. are immaterial to our discussion. In fact, a little more care can be used to show that

1, if d>4
Inn, ifd=4
E{Jnn}~Cax{nz, ifd=3. (2.2)
n, ifd=2
ny, ifd=1

We now make the following claim:

Lemma 2.1 In all dimensions, there exists; such that for alln > 1,

E{J2,} < CalB{Jnn}|".

Admitting Lemma 2.1 for the moment, we combine it with (2.2) and the Paley-Zygmund Lemma
(Lemma 1.2, Lecture 1) to get:

i >1 > 1.
%gfIP{Jn,n > 3E(Jpn)} >0,  Vd>1

On the other hand, Eq. (2.2) also shows us #af, , } — oo iff n < 4. Thus, we have obtained half of
the following theorem, due to Dvoretzky, Ersiand Kakutani:

Theorem 2.2 Two independent simple walk pathsZfi intersect infinitely often ifl < 4.

As | mentioned earlier, modulo proving Lemma 2.1, we have shown half of this theorem; namely, that
d < 4 implies infinite intersections “with positive probability”, which implies “with probability one”, by

29



the Hewitt—Savage 0-1 law. On the other hand, if 5, Eq. (2.1) shows us théitm sup,, E{.J,, , } < +o0.
From this, we gather that,, o, < +oo, a.s. and we are done. Thus, Theorem 2.2 will follow from our

Proof of Lemma 2.1Just expand the square, and use symmetry considerations to obtain

i=1 j=14¢=1j5'=1
<2 Y ) P{X!=X7, X, =X )+

1<i<i'<n 1<j<j’<n

+2 > Y PX =X, X} =X}

1<i<i’<n 1<5/<j<n
In expanding the above, it helps to recognize that there are four cases to consider:
1. i< i andj < j;
2. i< butj > j;
3. i =1 butj < j'; and finally
4. i=1andj = j'.
Thus, we can write

]E{ng} =Ty + Ty + T3 + Ty)

where
= > ) PX' =X, X,=X}}
1<i<i'<n 1<j<5'<n
T,= > Y PX =X] X=X}
1<i<i’'<n 1<5/<j<n
— 1 _ 2 _ 2
Ts= >, Y PXi=X=X}}
1<i<n1<j<j'<n
Ti= ), ) PX/=xj)
1<i<n1<j<n
Of course,

Ty = E{Jn,n} (23)
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Furthermore,

Ty= Y Y PX =X} -P{X; =0}

1<i<n1<j<j'<n

=1

ForT5, we note that i < ' andj’ < j,
PIX;] =X7, Xp =X} =P{X] =X;+ &, X +& =X}
where

2 2
& =X; — Xj, and
& =X} — X}
Thus, by the independence @fi, &) from (X}, X7),
P{X] = X]?a Xy = X]%} =P{X] = X]% +&1, 6 +6& =0}
< sup P{X] = X, +a} - P{& + & =0}

a€Zd

= sup P{X} = X, +a} - P{X)_, + X7 ;, =0}
a€Zs

= sup P{X} = Xj% +a}-P{X} = ij_j,},
a€Zd

d
2

Now, by another appeal to the local limit theoredP{ X} = X7 + a} < Cy(i +j)~
at least when + j is even; cf. (2.1). Therefore, by reshuffling the labels,

ED ) 3D SRR

1<i<i’<n 1<5'<j<n

<CaY Y DY PX =X} PX) = X7 )

1<i<i’<n 1<j'<j<n

< CIP{X] = X2},

Finally,

Ti= Y ) PX=XPX) =X}

1<i<i'<n 1<j<j'<n

LE{Jnn}]”.

IN
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Combining this with Eq.’s (2.3), (2.4) and (2.5), we obtain
E{J2,} < Ca[B{Jnn}])® + 2EB{J0n} - 1+ 2 P{X] = 0}].
j=1

We use the local limit theorem, once more, to see that

n 1, ifd>3
Y P{X}=0}<Cyx{lnn, ifd=2. (2.6)
j=1 nz, ifd=1
The lemma follows from this. O

You should compare Theorem 2.2 with the recurrence theorem for Markov chains, specialized to this
setting; cf. Theorem 1.1 of Lecture 1. Indeed, we note that by the latter theorem, and by the computations
that lead to Eq. (2.6),

Theorem 2.3 The simple walk itZ.¢ is recurrent iffd < 2.

Thus, it is the case that some transient walks intersect infinitely many times.

We could have studied this earlier on, since there are ho multiparameter martingales needed. However,
the continuous analogue of this theorem forces us to reconsider such a remark. Indeed, we shall prove the
following theorem of Dvoretzky et al. next time, using the Cairoli-Walsh theory.

Theorem 2.4 Let X and Y denote 2 independemnt-dimensional Brownian motions, both starting @&

Then, X (R ) N Y (Ry) = {0} iff d > 4.

In the course of our proof of&vy theorem, we needed a probability estimate (cf. Theorem 1.2 of Lec-
ture 2) that has the following two-parameter analogue, due to Aizenmann and Simon.
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Theorem 2.5 (Aizenmann and Simon)There exist&®; and Cs, such that for alk € (0, 1),

Cik(e) <P{ inf |X(s)—=Y(t)| <e} < Cak(e),

1<s,t<2
where
gd—4, ifd>5
k(e) = ¢ [In(1/e)]7t, ifd=4.
1, ifd <3
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Lecture 6

Intersections of Brownian Motion,
Multiparameter Martingales

Before proceeding, | wish to state two open problems; one of them was mentioned in Lecture 3.

Open Problem 1.SupposeX; ; are i.i.d. centered random variables foj > 1, and consider the

parameter random walk
Sn,m = Z Z X@j, Vn,m Z 1.

i<n j<m

By standardizing them, we can assume, without loss of generalityEfAat;| = 0 andE[ij] = 1. Then,
it is possible to show that the following law of the iterated logarithm holds:

. Sn,m o
lim sup =1,
n,m—oo v/ 4nm loglognm

atleastas long a¥ ; € L?1n L; cf. Ch. 4 of MPP. On the other handl; ; € L? is clearly not enough. |

L?InL ;
fact, X1 1 € 74,7 is necessary for
: S,
lim sup Sl < 400,
n,m—oo vVNm loglog nm

(loc. cit) Is there a necessary and sufficient moment-type condition for the LIL?
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Open Problem 2.By working harder, one can extend Theorem 2.2 of Lecture 5 as follows* #nd S?
are two independensymmetri¢and transient random walks at,

#{SN(Z4) N S*(Z4)} = +o0 <= Y P{S} =57} = +o0.
i,5>1

See Ch. 3 of MPP. Can symmetry be dropped? Are tapymonsymmetric walks that can be analyzed

1 Proof of Theorem 2.2

We start, as before, by considering the first two moments of

2 r2
- / / L{|x.~vi|<e} ds dt.
1 J1

Note thatX, — Y; is a normal vector with mean zero and variance mayfix+ ¢ times the identity matrix.
Note also thatl < /s +t < 2, forall s,t € [1,2]. Thus, by Lemma 1.1 of Lecture 3, we can fifig and

(5 such that for alk € (0, 1),
Clé‘d S E{Jg} S Cgé‘d.

Furthermore,
E{J2} = // // P{X, — V)| <&, |Xo — Vo| < e} dsdtds dt
212 J {22
= 2(T1 + Tg),

where

T = // // P{|Xs — Y| <e,|Xy —Yy| <e}dsdtds' dt’, and

1<s<s/<2 1<E<H <2

Th = // // P{|Xs — Y| <e,| Xy —Yy| <e}dsdtds dt.

1<s/<s<21<t<t'<2
Clearly,
7 < // // P{X, — Yi| <} - P{|Xo_s — Yy_y| < 26} dsdtds’ dt’

1<s<s/<2 1<E<H <2

d € d ! 34!
g% A1) dsdtds dt'.
VIS = s+ [t —t

<Cs

1<s<s/ <2 1<t<H <2
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We have used Lemma 1.1 of Lecture 3 once more. Now, this shows that

! _d € d
reoe [ (— Y
lzil<e “llwllz Al

¢ d
= Hsd/ (%/\1) rdr
0 ‘“rz2
g ifd<3

)

1 .
<C%e? x {2y (<), fd=4.
g

g2 ifd>5

We will obtain the same estimates fby:

T, = // // P{ Xy + & - Yy <e, | Xy +&— Y| < e}dsdtds dt’

1</ <5<21<t<t' <2

= // // P{| Xy +& — Y| <e, &1+ &| < 2e}dsdtds’ dt,

1</ <s<21<t<t' <2

where
&1 = (Xs - Xs/) and£2 - (Y;t/ - Yt)

Note thatX, — Y; is independent of¢;, £2). Thus,
T < // // sup P{| Xy + a— Yi| < e}P{|é1 + & < 25} ds dt ds' dt’

acR4
1<5/<s<21<t<H<2

g ifd <3

o
<Cue? x {2y (=), ifd=4,
g
€2, ifd>5
by yet another application of Lemma 1.1 of Lecture 3. Combining what we have, we obtain
g ifd<3

E(J.} =c! and E{J?} < Celx{ctn, (1), ifd=4. (1.1)
9

et ifd>5

This is good enough to prove that

1 — < >
P{lglgtfg | Xs — Y| <e} > Ckle),
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which is the desired lower bound. We now show this is sharp.
Consider the two 1-parameter filtrations

Fl=o(Xp;r <s)Vo(Yy; u>0) and  FZ =0V <t)Vo(Xy; u>0).

We now estimate
2 2
Mo =B (5I057 2 [ [ B -V <5t dodu - L, vieg)
t
8275 2—t
2/ / P{|Xu73—yv,t| S %}dvdU]‘ﬂXs*Yt\S%}
0 0

Thus, aslong as < s,t < 2,

1 1
2 2
Moz [7 [ B~ Vo] < S dvdu- 1, vy
0 0

Now, the above double integral is bounded below by a constant multiple of

d E{J?
/ZGRQ. glm) dz > O {;}.
isi<e =2 <

So,

E{J2},2 )
]E{ sup MSQJ}ZCd[ {ds}] ]P{ inf B‘XS—YHS%}
1<st<? € 1<st<3

On the other hand, Cairoli's maximal inequality asssures usRhatp, , M7} < 16E{JZ}, which, to-
gether with Eq. (1.1) yields

P{ inf [X, Y| <§}<Crle).
1<st<3

By a change of scale, the infimum can be taken eyer [1, 2] at little cost, and we are done. O

2 Multiparameter Martingales

Consider anN-parameter procesgM;; t € NV}, and anN-parameter sequence of sigma-fieltls=
{?t; tc NN}
We say thatF is afiltration, if
skt = F, C Ty
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Perhaps it is best to recall thak ¢ if and only if s; < ¢; foralli = 1,..., N. We say that\/ is adaptedto
the N-parameter filtratio if for all ¢t € NV, M, is F;-measurable. Finally)/ is amartingalewith respect
to the filtration if (i) M is adapted t&; (i) M; € L*(P) for all t € NV; and (iii) almost surely,

sxt = E{M,|F,} = M,.

In general, multiparameter martingales have not much structure to speak of. However, they do, if the filtra-
tion in question has some conditional independence properties.

2.1 Commutation

We say that theV-parameter filtratiord is commuting if for all s, € NV, and for allF,-measurable
bounded random variablés,

E{Y‘?s} = E{Y|3rsAt}a
wheres A t is the point inN"Y whoseith coordinate iss; A t;. The typical N-parameter filtration doesot
commute!

Theorem 2.1 If F is a commutingV-parameter filtration, for all random variableg € Ll(}P’), and for all
te NV,

B{Z|F,} =B[ - B(E{Z|5}}| F2) - ( T

In particular, we shall see, as a consequence, that any martingale with respect to a corfinisitimg
ortho-martingale! This, in turn, implies maximal inequalities, convergence theorems, etc.

Proof It suffices to prove this for bounded (why?). We will do this whenV = 2.
By Doob’s 1-parameter martingale convergence theorem, and by Lebesgue’'s dominated convergence
theorem,

B{E(Z|91}|97] = B[ Jim B(Z |9} | 9]
= Jlim E[E{Z | T} | 57]
= lim lim B[ B{Z |F:4} | Fe;],

k—00 £—00

where all of the convergences are taking plac&ifi?). Recall that¥ is commuting and” = E[Z | F; ;] is
Ji x-measurable and bounded. This implies that for any ather 1, a.s.,

EY [Fey] = EY | Faraes))
= EY |Fineknj]
= E[Z | Firekn;)-
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Thus, for everyi, 7 > 0 and for all bounded random variabl&s

E[E{Z |5} |F]] = klim glim E[Z | Fineenjls a.s.
This is clearly equal td&{~Z|F; ; }, and the result follows. O

The notion of commutation is equivalent to conditional independence. Recall that two sigma-fields
G, and G, are conditionally independent, give®, if for all bounded§;-measurable random variabl&%
(1=1,2),
E{Y1Y3|9} = E{11[S} - E{Y2|5}.

Theorem 2.2 For a given filtrationF = (F; ¢t € NYY), the following are equivalent:
(i) ¥ is commuting; and
(ii) for all s,t € N)Y, F; andF, are conditionally independent, givén, ;.
Proof Suppose for alt € N, Y; is a boundedr;-measurable random variable. Then,
EY,Ys|Fous] = E[Y. E{Y; | T2} | Fous] = E[Y E{Ys |Fuus} | Fons],  as.
Thus, (i) = (i7). Conversely, supposing th@t) holds,
YY) = E[B{YY|Fu}]
= E[B{Y |Fus} B | Fosl]
= E[E{Y} | Fas) - Ys]

SinceJ;, s C F5 and the above holds for all boundeH,-measurable random variabl®s, E[Y; | F;.s] =
E[Y: | Fs, a.s.. This shows thdi:) implies (i) and hence(i) is equivalent tqi). O

Example If X; ; are independent random variableésj(> 1), defined,, ,, = 0(X; ;; ¢ <n,j < m)to see

thatF is commuting. In particular, if we also knew that thés have mean zerd, ,m = >, > < Xiyj
is a martingale, as well as an ortho-martingale. What about additive walks? O

2.2 Back to Martingales

We conclude our discussion of martingales, under commutation, by linking them to ortho-martingales.
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Theorem 2.3 SupposeF is a commutingV-parameter filtration. Then)/ is a martingale with respect

F if and only if it is an ortho-martingale with respect to the marginal filtrationsfof

Proof Once again, we only really need to do this fér= 2. First, supposé/ is an ortho-martingale, and
consideri < n andj < m. Clearly,

E{Mpm |Fi;} = E( E{Mpm|F7} | Fij) = E{M;m|Fi}-

Now, projectm to j to see that orthomartingale implies martingale. In fact, for this half, commutation is not

needed.
Conversely, suppos#/ is a martingale with respect to a commuting filtration. We will show it is an
ortho-martingale for the marginal filtrations. By Doob’s convergence theorem,

B{M;15|F7} = Jim B{Mi1 5%}

Thanks to commutation, the abovelisi, E{M;1;|F; ;} = M; ;. Similarly, E{M; ;,|F7} = M; ;, and
we are done. O

Thus, in the presence of commutation, we have maximal inequalities, convergence theorems, etc.

41



42



Lecture 7

Capacity, Energy and Dimension

We now come to the second part of these lectures which has to do with “exceptional sets”. The most obvious
class of exceptional sets are those of measunehere the measure is some nice one. As an example,
consider a compact s& c R?. One way to construct its Lebesgue measure is as follows: dobgrsmall

boxes, compute the volume of the cover, and then optimize over all the covers. That is,

|E| = lim inf { Z[diam(Ei)]d : Fq, Es,...closed boxes of diametet ¢ with U; E; D E}

e—0t

)

Here, we are computing the diameter of the box as twicé itmdius; i.e., it is the length of any side. This
is equivalent to the usual definition of Lebesgue’s measure, although it is long out of fashion in standard
analysis courses.

1 Hausdorff Dimension and Measures

The first class of exceptional sets that we can discuss are those of Lebesgue’s eakuoairse. But,

this is too crude for differentiating amongst very thin sets. For example, consider the rafip@alsvell as
Cantor's tertiary se€. While they are both measuéesets,C is uncountable, whered$ is not. We would

like a concrete way of saying thét is larger tharQ, and perhaps measure how much larger, as well. There
are many ways of doing this, and we will choose a route that is useful for our probabilistic needs. First, note
that for anya: > 0, we can define the analogue|@f| as above. Namely, define

Ho(E) = lim inf{ Z[diam(EZ-)]a : Ey, Es, ... closed boxes of diametet ¢ with U; E; D E}

e—0t

1

This makes sense evemif< 0.
The set functiori,, is called then-dimensionaHausdorff measureThis terminology is motivated by
the following, which is proved by using the method given to us by Carathfy:
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Theorem 1.1 The set functiori,, is an outer measure on Borel subset&®8f For all a > d, Ho(E) =0
identically. On the other hand, when < d is an integer,H,(F) equals then-dimensional Lebesgu

measure of Borel sdf.

Hausdorff dimensions provide us with a more refined sense of how big a setis. Note that for any compact
(or even Borel, say) sdt, there isalwaysa critical o« such that for all3 < «, Hg(E) = 0, while for all
B > o, Hg(E) = +oo. This is an easy calculation. But it leads to the following important measure-theoretic
notion of dimension:

dim(F) = inf{a : Ho(E) =0} = sup{a: Ho(E) = +00}.

This is theHausdorff dimensiownf .

How does one compute the Hausdorff dimension of a set? You typically proceed by establishing an
upper bound, as well as a lower bound. The first step is not hard: just find a “good” coggririgiameter
less thare, and compute _, [diam(E;)]“. Here is one way to get an upper bound systematically; other ways
abound.

Suppose we are interested in computing the Hausdorff dimension of a given compactst, 1]¢.
Fix areal numbern > 1, and definel); = [%, m[, for integers0 < j < n. Then, it is clear that the

n

diameter of eact; is no more tharg, while U; E; > E. So,

HalE) < (5) Nl ),

whereN,,(E) = > <<, HIjn N E # @} is the number of times the intervalg,, contains portions of
E. Therefore, if we can find: such thatim sup,, n =%\, (E) < +o0, we havedim(E) < «.! Incidentally,
the minimala such thafim sup,, n=*N,,(F) < +oc is the so-calledipper Minkowski (or box) dimension
of E. If we write the latter aslim , (E), we have shown that

dim(F) < dim,, (F). (1.1)

If we replaceFE; by ad-dimensional box of the forrh%, %[x S X [%, %[ and repeat the procedure,
we obtain the upper Minkowski dimensiondrdimensions, and Eq. (1.1) remains to hold.

We now use this to obtain an upper bound for the tertiary Cantd€ s€irst, let us recall the following
iterative construction o€: let Co = [0,1]. Now, remove the middle third to obta@; = [0, 3] U [2,1].
Next, remove the middle thirds of each of the two subintervals t€get [0, 3]U[2, 2]U[S, ZJU[E, 1], and
so on. In this way, you have a decreasing sequence of compact subéets,a@fnd, as suchC = N,,C, isa

nontrivial compact subset @@, 1]. At thenth level of constructionC,, is comprised o™ intervals of length

We do not require: to be an integer here.
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37". Therefore|C,| = (3)" — |C| = 0. On the other hand, we just argued that there24rboxes, of
diameter no greater than (in fact, equal 38)that coverC. Therefore, we have shown th&f- (C) = 2.

In particular, for anya > logs(2), limsup,,,_,.(37™) " *N3m(E) = lim;,—c 37"*2™ = 0. So that,
after a little work, we getlim , (F) < logs(2). In fact, it is easy to see, by the same reasoning, that
dim,/(E) = logs(2). In any event, we obtain the following:

In2

= (1.2)

dim(C) < logs(2)
We will show that this is sharp in that the above inequality is an equality. But first, a questifonnot
stick to Minkowski dimensionf?is certainly easier to compute than Hausdorff dimension, and at first sight,
more natural. To answer this, try computidign,, (Q), or dim,, of any other dense subset|[6f 1]¢ for that
matter! You will see that the answeris On the other hand, it is not hard to show tdain(E) = 0 if E'is
countable, for then we can writ€ = {r;} and note tha{r; } is a cover ofE' with diameter less than This
seemingly technical difference is really a big one.

Now, to the lower bound fodim(C). Obtaining lower bound on Hausdorff dimension is, in principle,
very hard, since you have to work uniformly over all covers. What makes things difficult is that there are
alot of potential covers!

The ingeneous idea behind obtaining lower bounds is due to O. Frostman who found it in his Ph.D.
thesis in the 1935! Namely,

Theorem 1.2 (Frostman’s lemma) Suppose we knew that the compactfsearries a probability measu
w that is Holder-smooth in the following sense: there exists> 0 and a constantC' such that for al
r € (0,1),

w(B(y,r)) < Cr?,

for u-almost ally, whereB(y, r) is the/>-ball of radiusr abouty € R?. Then,dim(FE) > a.

There is a converse to this that we will only need once, and will not prove, as a result; for a proof, see
Appendix C of MPP.

Theorem 1.3 (Frostman’s Lemma (continued))Supposelim(E) > « > 0. Then, for eaclf < «, there
existsy € P(F) such that
p{B(z,r)}

< .
B +00

sup sup
z€R? re(0,1)
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Proof | will prove this when instead gfi-almost allz, the lemma holds for alt. The necessary modifica-
tions to prove the general case are technical but not hard.
Fixe € (0,1), and consider any covéf;, Es, ... of diameter< . Note that

L= u(B) < Y u(E) <O [dam(E;)]",

Optimize over all such covers, and tet— 0, to see that < 2CH,(E). The theorem follows, since this
shows that for any} < «, Hz(E) = +o0. (To prove in the general case, note thai(#;) is not less than

Cldiam(E;)], we can covelZ; by at mos2? compact intervalg? i, . .. , I} o0 Of diameter less than twice
that of E;, such thatu(Fj ) < C[diam(F};)]* < 2¢C[diam(E;)]*. Thus,u(E;) < 20T4C[diam(E;)]®,
which is good enough.) O

We use this to complete our proof of the following.

Proposition 1.4 If C denotes the tertiary Cantor selim(C) = {22

In3°

Proof In light of what we have already done, we only need to verify the lower bound on dimension. We
do this by finding a sufficiently smooth measure @n Our choice is more or less obvious and is found
iteratively as follows: construct the smoothest possible probability measymn C,, and “take limits”.

Now, the smoothest and flattest probability measur€gris the uniform measure,,. It is easy to see that
forall z € [0, 1],

pn(fx — 37",z +37"]) <277 = (37 I3, (1.3)

This is suggestive, but we need to work a little bit more. To do so, we next note that, thare nested:
We write C,, = U, , wherel,,, is an interval of lengttl8~™. The nested property of the,’s is the
following, which can be checked by induction:

Vn>m,Vj=1,...,2": pn(Ljm) = pon(Ljm) =27

Standard weak convergence theory guarantees us of the existence of a probability mgasuithe com-
pact selC such that foralln > 1and allj = 1,...,2™,

Moo(Ij,m) = Mm(Ij,m) =27
Moreover, Eq. (1.3) extends jo,,. Namely, for allx € [0, 1] and alln > 0,
Hoo([x - an’x + an]) < (an)ln2/ln3'
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Now, if 7 € (0,1), we can find» > 0 such thaB—"~! < r < 37", Therefore,

SUP fioo ([ — 7,2 + 7)) < sup pioo([z — 37", 2 + 377)) < (377)2/ 3 < (3p)n2/1n3,
T T

So, we have found a probability measurg on C, that satisfies the condition of Frostman’s lemma with
C = 32/n3 — 2 anda = In 3/1n 3. This completes our proof. O

2 Energy and Capacity

Suppose: is a probability measure on some given compact/set R?. We will write this asy € P(E),
and define for any measurable functipn £ x £ — R, U {occ},

est) = [ [ £ utdo) utae).

This is theenergyof 1 with respect to the gauge functigh it is always defined although it may be infinite.
The following energy forms are of use to us:

Energy, (1) = / / & — |~ p(de) pu(dy),

where|z| = max;<;<4 |x;| for concreteness, although any other Euclidean norm will do just as well. This
is the so-calledv-dimensionaBessel-Riesz energy .. The question, in the flavor of the previous section,
is when does a sdf carry a probability measure of finite energy® facilitate the discussion, we define the
capacityof a setly by

Cr(F) = inf & 71, and in particular,
ap,(E) [uelir’}( ) nergy, (:u)]

The above is Gauss’ principle of minimum energy. Next, we argue that there is a minimum energy measure
called the equilibrium measure. Moreover, its potential is essentially constant, and the constant is the energy.

Theorem 2.1 (Equilibrium Measure) SupposeE is a compact set iR such that for somex > 0,
Cap,(E) > 0. Then, there existgs € P(F), such that

Energy, (11) = [Cap,(E)] .

Moreover, foru-almost allz,

/ |z —y[~* u(dy) = Energy,, (1)
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Proof By definition, there exists a sequence of probability measufresll supported orF, such that (i)
they have finite energy; and (ii) for all > 1, (1 + 1)[Cap, (E)]~! > Energy,(1n) > [Cap,(E)]~". Let
u be any subsequential limit of the,'s. Sinceu € P(E) as well,Energy,, (1) > [Cap,(E)]~!. We aim to
show the converse holds too. By going to a subsequehat®ng whichy,,, converges weakly tp, we see
that for anyry > 0,

_ T X = lim T —yl™% s (de , 3 -1
//|xy|>r0 |z —y|™ u(dz) p(dy) | //xy>ro| Y|~ pir (d) o (dy) < [Cap, (E)]

n/—oo

Letry | 0 and use the dominated convergence theorem to deduce the first assertion. For the second asser-
tion, i.e., that the minimum energy principle is actually achieved for some probability measure.
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Lecture 8

Frostman’s Theorem, Hausdorff Dimension
and Brownian Motion

1 Frostman’s Theorem (Continued)

Now, consider
1, = {oe b [lo—yl ) < (1 nEnewy (0}, neO.D).

We wish to show that(Y,) = 0 for all » € (0,1). If this is not the case for somge (0, 1), then, consider
the following
CIAR )
((o) = .
© =)

Evidently,( € P(F), and has finite energy. Define
Ae=(1—e)u+e(, e €(0,1).

Then, )\ is also a probability measure d# and it, too, has finite energy. In fact, writing = ©—e(u— (),
a little calculation shows that

Energy,, (\:) = Energy,, (1) + €°Energy,, (1 — ¢) — 2¢ / |z — y|~* p(dx) [p(dy) — ¢(dy)].

(The energy of: — ( is defined as i — ¢ were a positive measure.)
Sincen minimizes energy, the above is greater than or equBhtegy , (1). Thus,

PEnergy, (1 — ¢) 2 22 [ [ o = ol ulde) [n(dy) ~ ()]
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Divide by e and lete — 0 to see that

Energy, (1) < / & — ™ p(dz) C(dy).

But by the definition ofY,,, the right hand side is no more th@h— n)Energy,, (1), which contradicts the
assumption that(Y,,) > 0. In other words,

/ |z — y|~* u(dy) > Energy,(n),  p-a.s.

It suffices to show the converse inequality. But this is easy. Indeed, suppose

Bue) = [ I~y (dy) = (1 + n)Energy (1),

on a set of positivegi-measure. The function — &u(z) is thea-dimensional potentiabf the measurg.
We could integratedyu] to get the desired contradiction, viz.,

Enerey. (1) = | Spla)(d) + [

& (@) p(d)
e, et

n

> (14 m)Energy, () - (@) + [ | Ou(o) ulde),

n

where®,, = {z : &u(x) > (1 + n)Energy,(n)}. Therefore, by Theorem 2.1 on equilibrium measure,
Energy, (1) > Energy, ()| (1+n)u(©y) + (0}
= Energy, (1) [1 + nu(@g)} :

which is a contradiction, unlegg©,,) = 0. This concludes our proof. O

SOMETHING TO TRY: The a-dimensional Bessel-Riesz energy defines a Hilbertian pre-norm. |
define M, (E) to be the collection of all measures of finitedimensional Bessel-Riesz energy Bn On
this, define the inner product,

(1) = / & — [~ pu(der) v(dy).

Check that this defines a positive-definite bilinear form/efy, (E) if o € (0,d). From this, conclude th
for all p,v € My (E), {u,v)? < Energy,, (1) - Energy,, (). This fills a gap in the above proof.

Thecapacitary dimensionf a compact seE ¢ R? is defined as

dim.(E) = sup {a : Cap,(E) > 0} = inf {a: Cap,(E) = 0}.
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Theorem 1.1 (Frostman’s Theorem)Capacitary and Hausdorff dimensions are one and the same.

Proof Here is one half of the proof: we will show that if there exists> 0 and a probability measuygeon
E, such tha€nergy,, (1) < +oo = dim(F) > «. This shows thadlim.(F) < dim(F), which is half the
theorem.

By Theorem 2.1, we can assume without loss of generality tiigan equilibrium measure. In particu-
lar,

(B, 1)) < r / & — 4 p(dy) = r*Energya (1),

u-almost everywhere. Frostman’s lemma (Theorem 1.2) showslthd) > «, as needed.
For the other half, we envoke the second half of Frostman’s theorem (Theorem 1.3) to produce for each
(8 < dim(FE) a probability measurg € P(FE), such that

p(B(z,r)) < CrP, Ve e RY, e (0,1).
But if D denotes the diameter &f,
ey, () =Y. [[ eyl utdn) )
1=0 9-j=1p<|z—y|<2-iD

20D D=7 sup w(B(z,277 D)
rERA

o,

o

<

[o@)
< C2Y DB Z 2j72—j/@’
=0

which sums ify < 3. Thus, we have shown that for all< dim(E), Cap,(E) > 0, i.e.,dim.(£) > v for
all v < dim(E), which completes the proof. O

2 The Brownian Curve

Next, we roll up our sleeves and compute the Hausdorff dimension of a few assorted and interesting random
fractals that arise from Brownian considerations. Our goal is to illustrate the methods and ideas rather than
the final word on this subject.

Throughout,B = {B;; t > 0} denotes Brownian motion iR¢. That is, a Gaussian processJRﬁ such

51



that By = 0, and
E{B!} =0 Vt>0,i=1,...,d
B(BB]) = {(8) " gt;;n/iise'
Recall also thaB3 is a strong Markov process. Then, we have already shown that
B hits points iffd = 1,i.e., 3t >0: By =0 < d=1.

This follows from our proof of levy’s theorem (Theorem 3.1, Lecture 2.) In particular, note that when
d = 1, the Brownian curve has full Lebesgue measure, and also full dimension. On the other hand, when
d > 2, the Brownian curve has zero Lebesgue measure, despite the following result.

Theorem 2.1 If B denotesi-dimensional Brownian motion, whetie> 2, dim B(R, ) = 2, a.s.

Proof We do this in two parts. First, we show théitn B(R,) < 2 (the upper bouny and then we show
thatdim B(R;.) > 2 (the lower bounyl In any event, recall that > 2.

Proof of the upper boun&ecall from Theorem 1.2, Lecture 3, that for any interizat R?,

gd=2, ifd>3

P{B[1,2] NI # &} < cx(|1]), wherex(e) = {m (}), ifd=2

A careful inspection of the proof shows that the constatiépends only o/, as long ad C [—M, M]°.
Considerly, ..., I,,« cubes of side’, such that (i)fy N I = @ if i # j; and (i) u?ilfj = [0,1]¢. Based
on these, define

o I; IfI]ﬂB[I,Q]#@
’ @, otherwise
Note thatE, ..., E,. is a(%)-cover of B[1,2] N [0, 1]¢. Thus,

nd

Ha(B[1,2]N[0,1]%) < lﬂgfzn_al{gnmm];&@}-
1

j=

Consequently, as long as> 2,

n—oo < n—o0

nd
E{H.(B[1,2] N0, 1]d)} < clim iann_aﬁ(%) = climinfnd_an(%) = 0.
7j=1
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In particular,dim(B[1,2]N[0,1]%) < 2, a.s. Similarlydim(Bla,b] N [-n,n]?) < 2, a.s. forany) < a < b

andn > 0. Letn T oo, a | 0 andb 7 oo, all along rational sequences to deduce that B(R, ) < 2,

a.s. This uses the easily verified fact that wheneleC A, C --- are compact, and i, (A4;) = 0, then
Ha(U;4;) = 0.

Proof of the lower boundror the converse, we will show thdtm B([1, 2] > 2, and do this by appealing to
Frostman’s theorem (Theorem 1.1, Lecture 7). To do so, we need to define a probability, or at least a finite,

measure on the Brownian curve. The most natural measure that lives on the c{iBie b s < 2} is the
occupation measure:

2
@(E) :/1 1{BSEE} dS.
With this in mind, note that for ang > 0,

2 2
Energy, (0) :/ |z — y|”* O(dz) O(dy) :/ / |Bs — B|"“ dsdt.
1 J1

By Frostman’s theorem, it suffices to show tfigEnergy , (0)} < +oo forall 0 < a < 2. But this is easy.
Indeed, note that

2 2 2 2
E{Energy,(0)} = 2/ / E{|B;—s| "} ds dt = 2/ / it —s|72 dsdt x E{|Z|7},
1 s 1 s

whereZ is ad-dimensional vector of i.i.d. standard normals. Since 2, the double integral is finite. It
suffices to show thadE{|Z|~*) < +oo. But

E{|Z|""} = / P{|Z]7 > A} dA
<1 +/ P{|Z]7® > A} d\
1
1 1
—1+a/ P{|Z| < u}u*"'du (u=A"2)
0

1
_1 +a/ P{1Z1] < u}]“u" du.
0

=

ButP{|Z1| <u} = (2m)~ fj‘u e~ 22 d\ < u. Hence, usingl > 2,

1 1
E{|Z]*} <1 —i—a/ u™ "t du < 1 —i—a/ u'™% du,
0 0

which is finite, as promised. O
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Lecture 9

Potential Theory of Brownian Motion and
Stable Processes

1 Transient Brownian Motion

Classically, probabilistic potential theory has been concerned with connections between Newtonian (and
more general potentials) and hitting probabilities for Markov processes. This is a rich theory that we have
already been introduced to in earlier lectures in the following fodhttimensional Brownian motion hits
points iff d = 1. In fact, we did this by going alot further. Namely, we estimated the hitting probability of a
small ball, where by hitting probability we mean something like the quaB®|[1, 2]NB(z,c) # }. The
classical connections run deep: harmonic and excessive functions, removable singularity for various elliptic
PDE’s on domains, etc.

To see immediate connections between Brownian motion and Bessel-Riesz potentials (here, Newtonian
potentials), consider Brownian motionRf whered > 3, and define the potential operaféras

/f ds /fB —i—J:)ds}

We compute this as follows: for all measuralfle R? — R, ,

L

_ —1) / f(y) J
- d Y-
R

2@ a flz —ylld-2

Thus, if & f denotes théd — 2)-dimensional Newtonian (and/or Bessel-Riesz) potentigl défined by
= [ f(y)|z — y|*~¢dy, it follows thatU f < & f.
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Now, let E ¢ R? denote a compact set whose hitting timer{gZ) = inf{s > 0 : B, € E}, and
consider a sub-probability densify : R? — R, such thatf = 0 off of £ (OK, provided thatE° has
positive Lebesgue’s measure.) Then,

Uf(fr):Ex{ f( ) ds; 7(B) < +o0 |
= / f(Bs+ Br(py) ds; 7(E) < —l—oo},

whereB’ is an independent copy @. This holds by the strong Markov property. Hence,

f ]Ez{uf T(E) )a T(E) < +OO}
=E, {Uf(B HE)) | 7(E) < +o00} - P, {7(E) < +00}

— /Rd Uf(x)p(dz) - P {7(E) < 400},

whereu(A) = Po{B;g) € A|[7(F) < oo}. SinceE* has positive Lebesgue’s measure, and sifice
has continuous sampleg, € P(E), and the above holds for all pdf’§ on E. Clearly, u(dz) << dzx.
Suppose thal is nice enough thaf = du/dx is a probability density function. Note, then, thaf (z) =

¢ fga llz = ylI>~* pu(dy) and [ Ufdp = c [[ ||z — y||*~ p(dz) p(dy) (for the same), which yields:

Jra llz = ylI>~ p(dy)
Energy_o(p)

Next, suppose that the starting poinis strictly outsider, so that for ally € E, ||z — y|| < 1. This shows
that

P {7(E) < 400} =<

1

PABRL) N E 7 0} = g )

for some probability measuge € P(FE). In particular,
Po{B(Ry) N E # @} < cCapy_,(E). (1.1)

It is relatively easy to argue that, in fact, the above is essentially optimal. Indeed, note fHa} i=
Jo° h(Bs) ds, whenh is any pdf onE,

e — 5 lle— yll2
E.{J(h }—/ / ————dsdy
Rd 27‘1’8

sincesup,cp |z — y|| < C in the above, and sincg hdy = 1. On the other hand, similar calculations
reveal thafE, {|.J(h)|*} < CEnergy,_,(h). Thus, by the Paley-Zygmund inequality,

Po{r(E) < oo} > c[,_inf  Energyq o(h)

56



The above describes an absolutely continuous capacity that can be shown to coincidepyith(E).
Modulo this last step and the part abolf being nice”, we have shown the following which is part of a
greater theorem of S. Kakutani.

Theorem 1.1 (Kakutani) Whend > 3, Brownian motion ifR? can hit a compact séf iff Cap,_,(FE) > 0.

Combining this with Frostman’s theorem, we get:

dim(F) >d —2 = Bcan hit

. . (1.2)
dim(F) < d —2 = B cannot hitE.

Ford = 1, 2, the above proof breaks down, since our definitiofilgfis typically infinite; this is due to the
neighborhood recurrence of Brownian motiorif, d < 2. However, the basic principle is still correct, as
long as we do something about times neav. The classical way to do this is to introduce an independent
meanl exponential random variabteand define th@-potential operator

W) =5 { [ 85},

The reason for the choice of the exponential law is fhatopped at is still a strong Markov process. Also,
check that

U f(x) = Ex | /0 e f(B ds).

Now, proceed as in the proof of Kakutani's theorem above, but pay attention to thedcaseésndd = 2
separately; we also need to replatg by U, f everywhere. This will lead to the complete

Theorem 1.2 (Kakutani’s Theorem) Brownian motion in any dimensiod hits a compact setr iff

Capd_Q(E) > 0.

The result is trivial wher! = 1 andCap_,(E) = 1 for all E. So, the content is in dimensia) where
Brownian motion hits only (and all) compact sets of positive logarihtmic capacity. In particular, Eq. (1.2)
holds in all dimensiondg > 2.

2 Additive Brownian Motion

SupposeX andY are two independeni-dimensional Brownian motions. We have already encountered the
problem of deciding wheX (R, )NY (R, ) # @. One way to interpret this is by the following identification:
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X(Ry)NY(R,) # @ the origin inR?. One can ask, more generally, what types of sets£#it? By
symmetry, we can rewrit& (in law) as

Zs,t =Xs+Y, Vs, t >0,

and call itadditive Brownian motior{with 2 parameters). More generally, we can defiieparameter
additive Brownian motior? as

N
Z =Y B, VteRY,
j=1

whereB!, ..., BY are iidd-dimensional Brownian motions. We can refetd@s( N, d)-additive Brownian
motion to keep the dimensions straight.

Theorem 2.1 (Hirsch and Song; Kh and Shi) (N, d)-additive Brownian motion can hit a compact ge

|ff Capd72N(E) > O

Sketch of Proof We will sketch an argument that shows thatfis (NN, d)-additive Brownian motion,
P{Z[1,2]N N E # @} > 0iff Capg_on(E) > 0. Going from[1,2]" to RY is standard, since the same
argument shows that for any culhe b] = ijzl[aj,bj] with a; > 0, P{Z[a,b] N E # @} > 0 iff
Capy_on(E) > 0. Thus, we can let; | 0 andb; T oo to finish. With this in mind, consider

= s

Then, one shows that jt is a pdf on thes-enlargement® of E, inf.~q E{J(f.)} > c andE{|J(f.)|?} <
cEnergy,_,(fz). In both of these estimates,depends on the outer radius Bfonly. But{.J(f.) > 0}
implies {Z[1,2]¥ N E° # @}. HenceP{Z[1,2]Y N Ef # @} > cCapy_on(E?) > cCapy_oy(E). Let
¢ — 0 and use the compactnessiftogether with the continuity of .

For the harder converse, we will prove tia{Z[1, 2| N E # @} > 0 implies Capy_yn(E) > 0.
Henceforth, we assume

P{Z[1,31N N E # @} >0, (2.1)

and letF; denote thes-field generated by Z,; r <t}. Note that¥ is commuting, and consider thg-
parameter martingal&/( f) given by

My(f) =E{J(f)|F:},  vteRY.
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Clearly, for allt € [1, 3]V,

Mi(f) > / E{f(Z.)| T} ds
t55<(2,2)
= / E{f(Z._, + Z;|F:} ds,
t55<(2,2)

whereZ’ is an independent copy &f. Therefore,

M)z [ B Z) (S vie 1L3NQ.

(0,31
Now, supposd™ € QY U {oo} is any random variable such that
() T° # o iff Z][1, %]N N E° # & whereE* is the closed-enlargement of;
(i) on {T°¢ # oo}, Zp- € E°.
The previous inequality fod,(f) implies,

Mre 1{T57éoo} > /[ o E{f(Z{n + Zrpe)| Zpe , T # oo} dr - 1{TE#OO}'
0,3
Define, for simplicity, the operatdf f (z) = f[o 1yn B{f(Z; + z)} dr, to see that
2
Thanks to Eq. (2.1} € P(E*), where
e() = P{Zg+ € o | T° # co}.
Hence,

E{ sup [M;(f)1*} > B{ [VF(Zr:)]” - Lie ooy }

teQY
= E{ [Vf(Zr:)]? | T° # 00} - P{T® # oo}
> [E{Vf(Zr<)| T* # 00}]* - P{T* # oo}

= [ [ Vs petan)] e 2 )

By Cairoli’s inequality, and by the mentioned second moment estimaté(foy, E{suptew |M(f)?} <
4N sup, E{|M; (f)|?} < cEnergy,_on(f). This leads us to

cEnergy, on (1) = | [ V(@) pelds)] P72 oc).

59



Now, lety, = (277)—‘115(07,7) be an approximation to the identity, and [et= .. x ,. Then, f is a pdf
on E*¢ and converges weakly to. asn | 0. One can show thdtnergy, on(f) — Energy,_on(ue), @s
n — 0, as well. We now wish to at least argue WAW f dp. — Energy,_on (1) asn — 0, as well. If so,
we can deduce that

P{T* # oo} < ¢+ Energy,_on(1e) < cCapy_on (E°),

which is our result but withE replaced by¢. Lettinge — 0 will lead everything to converge to their proper
limit. Thatis,P{T* # oo} — P{Z[1, 3]NNE # o} (easy to see this), arhp,_,y (E°) — Capy_on (E)
(harder to show.) It remains to identify the limitas— 0 of [V f dpu.. But

[vran= | /[0 B2 et

N // /[071]N pe(z —y) dt f(y)dy pe(dx),

wherep,(z) = (27 Zf\il ti)*g exp(—%). Now, letn — 0 to see thalf (y)dy ~ p.(dy), which does

the job. O

3 Additive Stable Processes

Recall that arR?-valued proces = {X;; ¢t > 0} is anisotropic stable processf indexa € (0, 2] if
St-1. For eacht, E{e ¥t} = exp(—1[[¢[|*);

St-2. Xy =0, a.s.; and

St-3. for eacht > 0, s — X5 — X; is a copy ofX that is independent dfX,,; u < t}.

The condition thatx € (0, 2] is forced on us by the above conditions, and wher- 2, X is Brownian
motion.

To perform potential-theoretic calculations, we only need estimates for the pdf afl else is done as
in Brownian motion. Here are the requisite facts. All can be found in MPP; Chapters 8, and 10, together
with proofs. Throughouty;(xz) = P{X; € dz}/dx.

By the Fourier inversion formula,

pi(x) = (2m) / e remall" e,
Rd

This can be used to show to that

e (t,x) — py(z) is continuous and strictly positive on compact subse(®gofo) x R?;
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o (scaling)p(z) = t~ap; (x/ta);

e (unimodality) p(z) < p:(0) = Ct—4, for all z € R%;

o (isotropy) p(z) = pi(y) if [lz]| = [lyl;

e (Blumenthal-Getoor’s asymptotics)as||z|| — oo, p1(z) ~ C/||z||~(4+).

An N-parameterndditive stable procesg is defined by

N
Z=)Y X, VteR},
j=1

whereX!, ..., X" are i.i.d. isotropic stable processes of index (0,2]. Then, the above together with
the Brownian methods outlined earlier, can be used in conjunction to prove the following:

Theorem 3.1 (Hirsch and Song; MPP Ch. 11)If Z denotes an( NV, d)-additive stable process of ind§gx
a € (0,2], thenZ hits a compact seb ¢ R? iff Cap,_, v (FE) > 0.

This is attractive, since it relate&pﬁ to a stochastic process for evetyc R, ; when N = 1, this is
classical, but only connects probability @ap; wheres € [d — 2,d]. One can use this to show also the
following.

Theorem 3.2 (MPP Ch. 11) Suppos€ is as above. Then, with probability one,

dim Z(RY) = d A aN.

To prove this, we only need the following, which is, in fact, a consequence of Theorem 3.1:

gd—olN if d>aN
P{Z[1,2]N N B(z,e) # @} < C x { {log(1/e)}"!, ifd=aN.
1, if d<alN

In fact, the constants depend only A, and the above holds uniformly for allc [— M, M]%.
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4 Application to Stochastic Codimension

The preceeding has a remarkable consequence about a large class of random sets. We say that a ran-
dom setX c R? hascodimension3, if 3 is the critical number such that for all compact séts— R¢

with dim(E) > B, P{X N E # @} > 0, while for all compact sets’ C R? with dim(F) < g,

P{X N F # @} = 0. The notion of codimension was coined in this way in Kh-Shi '99, but the essen-

tial idea has been around in the works of Taylor '65, Lyons '99, Peres 95,

When it does exist, the codimension of a random set is a nonrandom number.

Warning: Not all random sets have a codimensi'n.

The following is a fancy example for the above.

Theorem 4.1 (Kh-Peres-Xiao) Let B denote Brownian motion, and consider

By — B
F(\) = {tEO: limsupM:)\}.

e—0 +/2¢elog(1/e)

Then, for any compact sét C R, P{F(\)NE # @} = 0if dim,(E) < A%, while itis1if dim,(E) > \?,
wheredim,, denotes “packing dimension”

All that you need to know of packing dimension, here, is that it is not Hausdorff dimension although
dim, > dim. In fact, there are compact seisC R, such thatlim,(F) = 1 while dim(E) = 0. Multi-
dimensional examples are also possible.

As examples of random sets thdd have codimension, we mention the following consequence of The-
orem 3.1:

Corollary 4.2 If Z denotes anN, d)-additive stable process of index € (0,2], codim(Z[1,2]") =

d — aN.

We now wish to use Theorem 3.1 to prove the following result. In the present form, it is from MPP Ch.
11, but ford = 1, it is from Kh-Shi '99.
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Theorem 4.3 (MPP Ch. 11)If X is a random set ilR? that has codimensiofi € (0, d),

dim(X) = d — codim(X), a.s.

That is, in the best of circumstances,

( dim(X) + codim(X') = topological dimension]

A note of warning: ifX is not compactdim(X) can be defined byup,,~; dim(X N [-n,n]9).

The proof depends on the following result that can be found in the works of Yuval Peres '95, but with
percolation proofs.

Lemma 4.4 (Peres’ lemma)For each € (0,d), there exists a random satz, whose codimension 8.

Moreoverdim(Ag) = d — (3, almost surely.

Proof Let Az = Z(RY'), whereZ is an (N, d)-addtive stable process. The result follows from Corollary
4.2 and Theorem 3.2. O

Proof of Theorem 4.3By localization, we may assume thatis a.s. compact. Letg = u;ﬁlAg, where

Aé, A%, ... are iid copies of the sets in Peres’ lemma, and are all totally independent of our rand&m set
Then, by Peres’ lemma and by the lemma of Borel-Cantelli,

0, on{dim(X) < g}

P{AsNX A2 |X} = .
HanX # 2| X} {1, on {dim(X) > 5}
On the other hand, by the very definition of codimension,

0, if codim(X) > d — 8 = dim(Agp)
ED{AﬂﬂX#Qj‘Aﬂ}_{>O, if codim(X) <d— '

Take expectations of the last two displays to see that foriaay(0, d),
codimX) < d—f = dim(X) > f, a.s.
codimX) > d— f = dim(X) < f3, a.s.
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This easily proves our theorem.
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Lecture 10

Brownian Sheet and Kahane’s Problem

The (N, d)-Brownian sheeB = {B;; t € RY } is anR?-valued, N-parameter Gaussian process with i.i.d.

coordinate processeB;, . .. , B%, each of which has the covariance:
N
E{B{B!} = [[(sente), Vs, teRY.
(=1

For instance, conside¥ = 2 and write B, ,, for the sheet. Then,
e for each fixedu, v — u‘%BM is a Brownian motion;
e for each fixedv, u — v*%Bu,v is a Brownian motion;
e for eachc > 0 fixed, the proces®,.-. .. hasd i.i.d. coordinates each of which has covariance,
E{Bie*”,e”Bcle*u,e“} = Zexp(—|u — v]).
Thatis,v — B, .» Is an Ornstein—Uhlenbeck process.

You can also find all manners of time-changes of Brownian motion within Brownian sheet.

1 Local Structure and Potential Theory

1.1 Independent Increments

If t = s, By — By is independent of B,,; u < s}. Since all is Gaussian, we check this by computing covari-
ances, all the time assuming thlat 1, viz., forallu < s,

=

N
E{(B: — Bs)Bu} = [ [ (te A ue) = [ (se Aue) = 0.
/=1

i=1
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1.2 Incremental Laws
Whenever = s, B; — B, is a vector ofd i.i.d. centered Gaussians with variance
N N N N N
B{(B! = BD)* = [T ts+ [T se—2[Tti ns) = [Tts = T s
j=1 k=1 i=1 j=1 k=1

In particular, ifs is fixed, the above, for all = s that are close t@, is ~ Zle |t; — s;|. This is done by
Taylor expansions. In particular, locall$;, — B has the same law &¢V, d) additive Brownian motion.
Armed with the above estimate, one can then prove

Theorem 1.1 (Kh and Shi) If E is a compact set iiR?, P{B(RY ) N E # @} > 0iff Capy_on(E) > 0.
In fact, for anyM > 0, there exists; andcz, such that for all compack C [—M, M]d,

c1Capy_on(E) < P{B[L,2]N N E # @} < coCapy_on (E).

An immediate consequence of this is that coBi(Rﬂf) = d — 2N. Thus, essentially by Theorem 4.3
of Lecture 9, we have

Corollary 1.2 With probability one,

dim B(RY) = 2N Ad.

(Essentially refers to the fact that th&/ > d case needs to be handled separately, but in the latter cases,
it is not hard to show directly that the dimension/i¥

2 Kahane’s Problem

We come to the last portion of these lectures, which is on a class of problems that | call Kahane’s problem,
due to the work of J.-P. Kahane in this area.

Kahane’s problem for a random field is: “when doesX (F) have positive Lebesgue’s meastird?
will work the details out for Brownian motion, where things are easier. The problem for the Brownian sheet
was partly solved by Kahane (cf. his '86 book) and completely solved by Kh. '99 ingase2. Recent
work of Kh. and Xiao '01 has completed the solution to Kahane’s problem and a class of related problems,
and we hope to write this up at some point. Here is the story for Brownian motion, where we work things
out more or less completely. The story for Brownian sheet is more difficult, and | will say some words about
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the details later.

Theorem 2.1 (Kahane; Hawkes)If B denotes Brownian motion iR, and if £ C R, is compact, then

E{|B(E)|} >0 <= Capa(E) > 0.

You can interpret this as a statement about hitting proabilities for the level sets of Brownian motion, viz.,
/ P{B~Ya}NE # @}da >0 <= Capa(E) > 0.
R4 2

I will prove the following for Brownian motion. It clearly implies the above theorem upon integration.

Theorem 2.2 Supposer C [1,2] is compact, and fid/ > 0. Then, there exists; and ¢, such that for al
la| < M,

61Cap%(E) <P{a€ B(E)} < CQCBP%(E).

Proof Without loss of any generality, we may and will assume tat [0, 1].
For anyu € P(E) and for alla € R, define

T2) = o7 [T gy ()
Then, for everyM > 0, there exists: such that

inf inf E{J? > ¢, and
aeu(%,l) ae[H}w,M] (e} = e,

sup sup E{|J¢ (u)|*} < Energya (i),
a€R £€(0,1) 2

2.1)

Now, we apply Paley—Zygmund inequality:

P{a € B(E)} > P{JZ(n) > 0}

[E{2 (1)}
B E{\J“(M)I }

Energyg (1)
2
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Since this holds for all. € P(E), we obtain the desired lower bound.
Let {F;}+>0 denote the filtration o and consider the martingale

M (p) = B{JZ () [ T2}, Ve = 0.
Clearly,
M () > (22)7" /> P{|Bs — a| <e[F¢} plds) - 1, —qj<2}
s>t

> @) [ BB < dehulds) - 1gsiass)

> ce! ° : c
> ce /SZt (\/m A 1) pu(ds) - 14, —a|<5}
Leto. = inf{s € E: |B, —a| < 3¢}. This is a stopping time and dw. < oo},

e

Mgzt [ A1) w(ds),
s>0. S — O0¢

since all bounded Brownian martingales are continuous. Now, we choaseefully: WLOGP{o. <

oo} > 0 which implies thaju. € P(E), where
pe(o) =P{o. € o] 0. < o0}.
Thus, by the optional stopping theorem,

1 > E{MZ* (pe); 0 < 00}

) =

/\1 us(ds) pe(dt) - P{o. < oo}

g 1// M ue(ds) pie(dt) - P{o. < oo}
C// Vs —1 Me(ds) pe(dt) - P{o. < oo}

Fix g > 0 and from the above deduce that foramall,

g // |5—t| QME(dS):us(dt) P{lnf|Bt_8|< E}

\s t|>50
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Lete — 0, and envoke Prohorov’s theorem to get P(E) such that

Plac BE} <2 [[ ls—d butas)uan)]

‘sft|25o

Letdg | O to finish. O

To prove the general result, one needs the properties of the précassund a time point. There
are 2"V different notions of ‘around’, one for each quadrant centeret ahd this leads t@” different
N-parameter martingales, each of which is a martingale with respect to a commuting filtration, but each
filtration is indeed a filtration with respect to a different partial order. The details are complicated enough
for N = 2 and can be found in my paper in thieansactions of the AM@999). WhenN > 2, the details
are more complicated still and will be written up in the future. | will end with a related

CONJECTURE SupposeX is an(lV, d) symmetric stable sheet with indexc (0, 2] (see below.) Then, f
any compactz ¢ RY, E{| X (E)|} > 0iff Caps(E) > 0.

At the moment, this seems entirely out of the reach of the existing theory, but the analogous result for
additive stable processes, and much more, holds (joint work with Xiao—will write up later.)

To finish: {X;; t € RY} is an(V, d) symmetric stable sheet if it has i.i.d. cooridinates and the first
coordinate has the representati&ip = [ 1 (0<s<1yX(ds), whereX is a totally scattered random measure
such that for every nonrandom measurallec RY, E{exp[i¢X(A)]} = exp(—3|4] [|€]*). (Scattered
means that for nonrandom measurafiland 4’ in RY , if AN A’ = @, X(A4) andX(A’) are independent.)
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