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Preface

These notes are based on five 1-hour lectures on Brownian sheet and potential theory, giveDeat the
ter for Mathematical Sciencest theUniversity of Wisconsin-Madiseruly 2001. While the notes cover
the material in more depth, and while they contain more details, | have tried to remain true to the basic
outline of the lectures. A more detailed set of notes on potential theory, seePRlk notes, although
the material of these lectures covers other subjects, as well. ERFL notes are publicly available at
HTTP://WWW.MATH .UTAH.EDU/"DAVAR/LECTURE-NOTES.HTML. Finally, a much more complete theory
can be found in my forthcoming bodWultiparameter Processes: An Introduction to Random Fielddbe
published bySpringer—Verlag Monographs in Mathemati@sl references to MPP” are to this book.

| am grateful to Professor J. Kuelbs for his invitation, and to all the participants for the interest and
support. | also wish to thank th¢ational Science Foundatidior their continued support, both of my work,
as well as the wonderful Summer Internship Program authigersity of Wisconsin-Madison

Davar Khoshnevisan
July 2001



Lecture 1

Centsov’s Representation

A one-dimensional Brownian sheet i2garameter, centered Gaussian proceBs= {B(s,t); s,t > 0}
whose covariance is given by

E{B(s,t)B(s',t')} = min(s,s’) x min(t,#'), Vs, s t,t' > 0.

There are many ways to arrive at such a process; one of the quickest is via fluctuation theory for 2-parameter
random walks. Imagine a sequen@ ;; 4, > 1} of i.i.d. random variables that take their valueqin1}

with P{&;1 = 0} = P{&,1 = 1} = 3. For instance, think of eactsite’ (i, ) as ‘infected if & ; = 1,
otherwises; ; = 0. Then, the number of infected sites in a large filx] x [0, m] is

S(n,m) = Z Z iy Vn,m > 1. (0.1)

1<i<n 1<j<m
A natural way to normalize this quantity is to set

¢ - §ij —E{&is}

Note thatS(n,m) is a sum ofnm i.i.d. variables, each with meahand variance}, and.S’(n, m) is its
standardization. Thus, we can replagg by §§,j everywhere, and assume that Eq. (0.1) holds, where
E{¢,;} = 0 and E{gﬁj} = 1. With this sudden change of notation in mingl(n, m) is a sum ofnm

i.i.d. random variables with medhand variance. Thus, by the central limit theorem of De Moivre and
Laplace,(nm)‘%S(n,fm) converges in distribution to a standard normal lawpas — oo. Of particular
importance is the case whereandm go to infinity at the same rate. That is, when= |Ns]| and

m = |Nt|, wheres,t € [0,1] are fixed, butN — oo. In this case,N~1S(|Ns], | Nt|) converges to

S(n,m) —E{S(n,m)}  28(n,m)— nm

=2;—-1,  Snm)= Var{S(n,m)} Vnm

IMuch of what we do here can be extended to more parameters, but such extensions are not of central importance to these
lectures.



a mean zero normal law with varianggij. Note that this is the law of3(i, j), and one can show, in
fact, that in a suitable sense, the entire random functidm! S(| Ns|, [ Nt]); (s,t) € [0,1]?} converges
weakly to the random functiohB (s, t); (s, t) € [0, 1]?}. To convince yourself, check, for instance, that the
covariance betweeN ~1S(| Ns|, |[Nt]) andN~1S(| Ns'|, | Nt']) converges, ad — oo, to that between
B(s,t) andB(s',t’), which ismin(s, ') X min(¢,t').

In the above model, one can relax the independence assumption to something involving “asymptotic
independence” (e.g., strong mixing, etc.) to obtain more realistic models.

1 White Noise

Recall that a column vectaX = (X3,...,X,,)" is (nondegeneratanultivariate normalif there exists
an invertible(m x m) matrix A and a sequence of i.i.d. standard normal variags .., Z,,, such that
X = A'Z, whereZ = (Z1,...,Zy)’, as a column vector. To compute its law, simply note that for all

m-vectorsg (written as a column vector),

m
E{c€'X} = B AZ) = [ B{ei€'A0 %) = 3 TIEA);  (—5€ AL
(=1

In fact, this makes perfect sense as lond\as is invertible, regardless of whether or fefis even a square
matrix. Moreover, the density function & is then given by

f(x) = (277)_% (detA’A)_% exp { — 3x'(A'A)'x}, Vx € R™.

From this formula, we immediately obtain that two Gaussian variables that are jointly Gaussian aye inde-
pendentf and only if their correlation i9). Moreover, pairwise independence of jointly Gaussian random
variables is equivalent to their total independence.

If T'is an arbitrary index set,@aussian procesg = {g;; t € T'} is a stochastic process such that for all
finite t1,...,t, € T, the law of(g4,, - .., g¢,,) is multivariate Gaussian. (Remember that in these lectures,
all Gaussian laws are centered, i.e., have nteaNote that if such a process exists,dts/ariance function
(s,t) — X(s,t) completely determines its law, where

Y(s,t) = E{gsqi}, Vs, teT.
It is easy to see that if exists,

e X is a symmetric function.
Proof. X(s,t) = E{gsg:} = E{g:9s} = X(t, s). O

2



e Y is a positive definite function.
Proof. For all m and for allm-vectorsn, and for allsy, ..., s,, € T,

m m m m
ZZ 177] S’L?Sj { ZZijgsigsj}
i=1 j=1

i=1 j=1

“={(Lne.))

=1
which is positive.

Conversely, by the Daniell-Kolmogorov consistency theorem, any symmetric positive definifex
T — R corresponds to a Gaussian procegsdefined on the probability spad®’ endowed with the
product topology and the induced Borel field. This is not a good probability space, but is the best one can
do in general. In any event, we now know that at leaskists! What it all amounts to is that once we have
a symmetric, positive definite function, it corresponds to a Gaussian process.

To define white noise, we only need to provide a formula for the covariance funtiiand need
to identify 7. Let T = B(RY) denote the collection of all Borel measurable subset®fof finite
Lebesgue’s measure. Moreover, we identify two elemefitsand A,, of T if the set difference A1 A A,
has zero Lebesgue’s measure.

Define

Y(A,B)=|ANB|, VA, BcBRY), (1.1)

where| - - - | denotes theéV-dimensional Lebesgue’s measure. Cleailys symmetric. We seek to show that
it is positive definite. But, for ali;, ..., A,, € B(RY),and allny,...,ny € R,

DD S A Ay = ZZ!A N Ajlnim;
=1 j—1

=1 j=1

—ZZ/ 14,(z)14,(z) dz nin;

i=1 j=1

— /RN (niilAi(x)de,

thus proving positive definiteness. This shows that

Theorem 1.1 There exists a Gaussian procégs= {W(A); A ¢ B(R")} whose covariance function

described by Eq. (1.1).




The proces®V is the famousvhite noiseon RY . We begin studying its elementary properties.

Lemma 1.2 If A;, Ay € B(RY) are disjoint, W(A; ) and W(As) are independent. Moreovefy(A;) is a

mean zero normal variate with varian¢d |.

Proof For the first part, note that
Since uncorrelated Gaussian variables are independent, the first assertion follows. The second assertion
follows from the definition. O

Next, consider nonrandom disjoint sets, As € B(IRN), and make a direct calculation to see that
E{ [W(A1 U As) = W(A1) = W(A3)]} = B{[W(A1 U A2)]2} + E{[W(A1)]} + E{[W(42)[2}
+ 2E{W(A1)W(A2)} — 2E{W(A; U A)W(A;)}
— 2E{W(A; U Ay)W(A2)}
= |A; U Ag| + |A1| + |A2| + 0 — 2] 41| — 2|A2],

thanks to Lemma 1.2 and the fact thét and A, are disjoint. Using the latter property once more, we see
that

AiNA =0 — E{ [W(Al U Ag) — W(Al) — W(AQ)]Q} = 0.
A similar calculation shows that for generdl, A, € B(RY),
W(Al U Az) = W(Al) + W(AQ) — W(Al N Ag), a.s.

One can extend this immediately to a finite numberdg§ by induction. However, we should recognize
that there is a null set outside which the above fails, and this null set depends on the choicd . the
fact, it isnot true thatW is a random measure for almost every realization. However,

Lemma 1.3 White noise is a vector-valued random measurékdnin the sense of %(P).

Indeed, for this, you only need to check that when> A; O --- are all inB(IRN) and all have finite
Lebesgue’s measure, andif A, = &,

lim E{ [W(4,)]°} = 0.

n—oo

But this is easy.



2 Brownian Motion

Recall thatB = {B(t); t > 0} is Brownian motionif it is a Gaussian process dk with the covariance
function
Y(s,t) =E{B(s)B(t)} = s At, Vs, t € Ry

To obtain this from white noise, |18 denote white noise oR anddefine
X(t) = W([o,¢]), vt > 0.

Then,X = {X(s); s > 0} is a Gaussian process with the same covariance functidhadve. Thus, it

is Brownian motion. In other words, to obtain properties of Brownian motion, we can assume that it is of
form W([0,¢]). SinceW is a kind of measure, this means that Brownian motion is the distribution function
of white noise orR, viewed as ari.?(PP)-measure.

3 Centsov's Representation

Recall thatB = {B(s); s1,s2 > 0} is Brownian sheeif it is a Gaussian process dwith the covariance
function
E(S,t) = E{B(S)B(t)} = (81 A tl) X (82 A t2), Vs, t € R%_.

Check that Brownian sheet can be realized as the distribution function of white noie dimat is, if W
denotes white noise di?, t — W([0,¢;] x [0, t2]) is Brownian sheet. This representation is du€émtsov,
and while it is simple, it has profound consequences; we will tap into some of them in the next lecture.






Lecture 2

Filtrations, Commutation, Dynamics

Now, we useCentsov’s representation to study how the prodess B(t) evolves near a given ‘time point’
t = (t1,t2). That is, given a fixed with t1,t5 > 0, we wish to study the evolution of the 2-parameter
processs — B(t + s). You can think of the proceeding as 2-parameter Markov property.

Throughout, we realiz&(t) in its white noise formulation:

B(t1,t2) = W([0,11] x [0,22]),  Vt € RY.
Throughout, we will need the relatiog, defined orR? x R? by
st <= 51 <t;andsy < t, Vs, t € R?.

Note that(R?, x) is a partially order set. With this in mind, we can define a sequence of sigma-algebras
F = {F(t); t € R2 } as follows: for allt € R? , F(t) denotes the sigma-algebra generated by the collection
{B(s); (0,0) < s<t}. Thisis afiltration with respect tox in the sense that

st = F(s) CF(t).

Anysequence of sigma-algebras that is increasing with respectd@alled diltration.

1 Commutation of the Brownian Filtration

We can always define the minimum operatiomnR? x R? by
(s A t); = min(s;,t;), Vs, t eRE,i=1,2.

Given this definition, we say that any 2-parameter filtratis commutingif for all s,t € R2, G(s)
and§(t) are conditionally independent givé}{s A t). This means that for all boundeg{t)-measurable
random variables;, all bounded3(s)-measurable variates, we almost surely have

Ef&e x & |G(s A t)} = E{& [S(s A t)} x E{&s |S(s A )}

7



Theorem 1.1 (R. Cairoli and J. B. Walsh) The Brownian sheet filtratior$f, is commuting.

Sketch of Proof Note that for anyt € R2 , F(t) is the sigma-field generated HyW(A); A C [0,#1] x
[0,t2]}. Intuitively, this is because of the inclusion-exclusion formula of J. Poscawill describe this
in the simpler discrete setting. A formal verification is more difficult and requires more work, but few new
ideas are needed; cf. MPP (Chapte§4), for details.

In the discrete setting, we wish to construct white nois&dfinstead ofR?). That is, we want

o forall A C 72 W(A) is Gaussian with variancg A;
o if A1, Ay C 72 are disjoint,W(A;) andW(A,) are independent.
It is easy to construct such a white noise: simply{lgt};c> be i.i.d. standard Gaussians, atefine
WA) =) "m, VACZ®
icA
(Check!) Discrete Brownian sheet is ther- > _; . i forall t € 72, and it follows (really from Poinca¥$
inclusion—exclusion formula) that (t) is the sigma-field generated B¥3(s); s < t, s € Z2}, thenF(t)

is also the sigma-field generated PW(A); A C ([0,1] x [0,¢2]) N Z2}.
In continuous-time, one needs to be more careful, but this is the basic idea, nonetheless. O

The above says alot about the evolution of the protess B(t), and we will come back to it later.
However, there are other evolutionary properties, as well. Here is one example.

Lemma 1.2 K-Markov property) Fixs € R% with s;, so > 0. Then,t — B(t +s) — B(s) is indepen

dent ofF(s). In particular, conditional onB(s), t — B(s + t) is independent df(s).

In fact, we will soon see what the conditional distribution of the above process is.

Proof Clearly, wheneven < s are both in]R%r ,

E{[B(s + t) — B(s)] x B(u)} = min(sy + t1,u1) x min(sz + t2,uz) — min(sy, u;) X min(s, uz)
= Uz — UIU2
= 0.

But for Gaussians, uncorrelatedness = independence. This shows-th&k(t + s) — B(s) is independent
of F(s). The second assertion follows from the first. O



But, B(s + t) — B(s) is Gaussian with variance
o(s,t) = E{|W([0,t +s] \ [O,s])f} = (t1 + s1)(t2 + s2) — s152,
where[0, u] = [0,u1] x [0, uz] for allu € R2. Thus, we can find the “law” of the “future” giveB(s):

22

+oo
E{f(B(s + t)) | F(s)} = \/ﬁ/ Pz 4+ B(s))exp ( - m) i @1

2 Local Theory: Dynamics

We now wish to study the properties of the process near a given timespdior simplicity, letl = (1, 1),
0 = (0,0), and consider the process— B(t + 1) — B(1). In white noise terms, this is
B(t+1) - B(1) = W([0,t + 1]\ [0,1])
= W([1,t1 +1] x [0,1]) + W([0,1] x [1,¢2 + 1]) + W([1,t + 1])
= Bi(t1) + Ba(t2) + B'(t).

The important thing to remember is that since whené&den As| = 0, W(A; ) andW( A, ) are independent.
This means that the processgs 3, and B’ are all totally independent from one another, as welFék);
the last statement comes from Lemma 1.2. On the other hand, fosall R? ,

E{Bi(t1) - Bi(s1)} = E{W([17t1 +1] % [0,1]) - W([1, 51 + 1] x [0, 1])}
- ‘([1,t1 + 1) % [0,1]) N ([1, 81+ 1] x [0, 1])‘
= min(¢y, 81).
Thus,; is a Brownian motion. By symmetry, is also a Brownian motion. Finally,
E{B/(s) - W(t)} = ‘[1,’5 +1N[Ls+ 1]‘
= min(sy,t1) X min(sy, t3).

That is,W’ is a Brownian sheet. We have proven the following:

Theorem 2.1 (W. Kendall) The process — B(t + 1) has the decomposition

B(t+1) = B(1) + B1(t1) + Ba(t2) + B'(t),

where3; and 3, are Brownian motionsB’ is a Brownian sheet, an({3,, 32, B’) are entirely independe
from one another, as well as from(1).




The above has been expanded upon very nicely in a series of articles by R. C. Dalang and J. B. Walsh;
cf.. the Bibliography.

This decomposition is quite useful in analysing the sample paths of the sheet. For instance, suppose we
are interested in the behavior Bt + 1) whent ~ 0. Note that the variance &f; (t1) (82(t2), resp.) is;
(t2, resp.), while that of3’(t) is t1t5. Sincet =~ 0, it stands to reason thdt'(t) should be a.s. dominated
by 51 (t1) + B=2(t2), ast — 0. This can be made rigorous in various settings, and the end result, usually, is
that, at least locally, one might expect

B(t+1) ~ B(1) + B1(t1) + B2(t2).

The 2-parameter process— [;(t1) + (2(t2) is muchsimpler to analyse, and is calledditive Brownian
motion Of course, this discussion is heuristic, but the ideas introduced here can be useful in studying the
local structure of the sheet, amongst other things.

SOMETHING TO TRY: Find a decomposition near a general paintith s;, s, > 0 analogously. A muc
harder, though still possible, exercise is to completely characterize the ptoees8(t) given B(s) for a
fixeds € R? with s1,81 > 0.

(HINT: B(s +t) — B(s) should look likes231(t1) + s102(t2), plus a Brownian sheet. For the rest of fhe
decomposition, it suffice to consider the procéssts) — B(s1 — t1,s2 + to) wheret; € (0,s;) and

to > 0. For this case, try finding = 75+ such thatt — B(s; — t1,s2 + t2) + vB(s) is independent
B(s). There is a unique choice of suckyaShow that with this choice of, t — B(s1 —t1, sa+t2) +7B(s)

is, in fact, independent of the sigma-algebra generated3ty); 1 > s1, 0 < ro < s9}.)

Motivated by this heuristic discussion, we note that i R? is fixed and ifs;, s, > 0, there exists a
finite constant = ¢(s) > 1, such that for alt € [s,s + 1],

1
[t] < 0%(5.t) < clt]. (2.2)

This is motivated by the heuristics above, since at least fmall, B(t + s) — B(s) is supposed to look
like so1(t1) + s102(t2) whose variance is exacthpt; + sito. The latter is betweemin(sy, s2)|t; + t2]
andmax(s1, s2)[t1 + to|. Since all norms ofR? are equivalent, the displayed inequalities should follow.

SOMETHING TO TRY: Prove Eq. (2.1), either directly, or by appealing to a decomposition s)\@ala
Theorem 2.1.

As a consequence of Eq. (2.1), used in conjunction with Eq. (1.1), we obtain the following analytical
counterpart to our heuristic discussion about the sample patisefr a poink:
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Lemma 2.2 For each fixeds € ]Ri with sq, so > 0, there exists a constaiit = C'(s) > 1, such that for al
positive, measurablg : R — R, and allt € R? ,

c! B 6_%ii<E B(s+1t)|F(s)} < C B 52%%
56+ BN i < BB+ 510 < € [ e+ BN

It is time to stop and see what we would have done Bdmken ordinary Brownian motion. In this case,

E[f(B(t +5)) | F(s)} = & / T fe+ Bls)e T ds

=pt* f(B(s))
= th(B(S)),

wherex denotes convolution , and

22

e~ 2t

VA ot

By the Chapman-Kolmogorov equatiorS,;f(z) = &;(&sf)(x). In the language of operator theory,
Gtys = 6:6,, which means thafS; }+>¢ is a convolution semigroup of linear operators. This is known as
theheat semiground is intimately connected to parabolic PDE’s based on the Laplacidiemma 2.2 is
a quantitative analogue of such operator-theoretic connections when there are two parameters involved. In
disguise, it states that Brownian sheet is related to the two-parameter convolution senhigrotp, G;,,
but only in the sense of inequalities that holdcally”; this is useful sinceS; is a positive operator in that
“f>0,ae”"="6G,f >0, a.e.” By “local’, | mean thats is fixed, and we are looking locally around time
s. Finally, let me mention that such inequalities are the best that one can hope for, since it can be shown that
exact connections to two-parameter semigroups do not hold in a useful and meaningful manner.

Another application of Eq. (2.1) is to the continuitytof~ B(t). Note that

pe(z) = Vt >0, x €R.

E{|B(t +s) — B(s)|*} = o(s, t)
< clt|.

But the following property of Gaussian random variables is easy to verify by direct calaculatigis &
Gaussian variate, for any> 2, there exists:(p) such that|g||, = n(p)\|g||§/2. Consequently,

E{|B(t +s) — B(s)[’} < ck(p)|t|2,  Vte R’ (2.2)

11



Now, we recall the followingV-parameter formulation of Kolmogorov’s continuity lemma that is proved as
in the more familiar 1-parameter case.

Lemma 2.3 (A. N. Kolmogorov) Letz = {z¢; t € RY } be arandom process indexedIRY , and suppos
that for all compactk’ ¢ RV, there existsg;, o > 0 andn > N such that for alls, t € K,

E{laess — 5]} < clt]".

Then,z has a modification that is continuous.

The values ofp andc are immaterial to the content of this result. Howevemust bestrictly greater
than N (the number of parameters) for this result to be applicable. Better results are possible via the notions
of metric entropy, and majorizing measures, but the above is good enough for our purposes. Combined with
our calculation for the Brownian sheet, Eq. (2.2), we obtain

Lemma 2.4 Thre exists a modification @8 that is continuous. In particular, one can construct the faw
Po B~! onthe spacé]([o, oo)N) of continuous functions, endowed with the compact-open topolog

The second line merely states that we do not have to construct the lBwmthe ill-behaved spadéw
with product topology. But, rather, afi ([0, 00)"), which is quite a nice measure space. As a notational
aside, recall thaP o B~'{e} is the measur@{B < e}.

12



Lecture 3

Cairoli’'s Theory of Martingales

Recall thats < t means that; < t; andsy < to, and thas A t = (s1 A t1, 52 A ta) € R2. Recall also that
F = {F(t); t € R2 } is a two-parameter filtration ifi) for eacht € R?2 , F(t) is a sigma-algebra; and)
whenevess < t are both inR2, F(s) C F(t).

A 2-parameter processM (t); t € R2 } is amartingalewith respect to the filtratiofF if

(i) for eacht € R%, M (t) is F(t)-measurable;
(i1) for eacht € R2 , M (t) € L'(P); and
(i4i) wheneves < t are both inR% , E{ M (t) | F(s)} = M(s), a.s.

In general, there is no useful theory of 2-parameter martingales, as there exist bounded 2-parameter
martingales that do not converge; cf. Dubins and Pitman in the Bibliography, or Chapter 1 of MPP. However,
Cairoli, and subsequently, Cairoli and Walsh have shown us that, under commutation, things work out rather
nicely for 2-parameter (and, in general, multiparameter) martingales. In light of Theorem 1.1, we can apply
such a martingale theory to the filtration of the Brownian sheet, which is our long-term goal. In this lecture,
we mostly concentrate on aspects of the Cairoli-Walsh theory that we will need. In order to avoid the
technical issues that come with continuous-time processes, we only consider martingales in discrete time.
This will be ample for our needs. As such, throughout this lecture, our parameter set is some countable
subset ofR? that inherits the partial ordex as well. Without loss of much generality, we assume this to be
N2, whereN = {1,2 ...} are the numerals.

1 Commutation and Conditional Independence
Recall thatF is commuting if for alls, t € N?, F(s) andJF (t) are conditionally independent, givéiis A t).

13



Theorem 1.1 If ¥ is commuting, and” is a bounded random variable, for asyc N?,

BV |5(s)} = E{EV [F'(s1)]| F2(s2) ). as.

whereF1(i) = V;>1F(i,j) andF2(j) = Vi>15 (i, 5), Vi, j > 1.

Henceforth, we calf! = {F'(i); i > 1} andF? = {F2(j); j > 1} the marginal filtrationsof the
2-parameter filtratior¥. Note that the marginal filtrations of a 2-parameter filtration are two 1-parameter
filtrations in the usual sense.

Before proving Theorem 1.1, we establish a technical lemma.

Lemma 1.2 A 2-parameter filtratior is commuting if and only if for alk, t € N?, and for all bounde
F(s)-measurable variate¥y,

E(Y: |5(6)} = E(Y; | F(t A s)},  as,

Proof First, we suppos#& is commuting. That is,
E{Ys x Vi |F(s A t)} =E{Y5 | F(s A t)} x B{Y; |F(s A t)}, a.s.
Take expectations to see that
E{Ys x Yi} = E[E(Ys | F(s A t)} x B{V; | F(s A t)}]
- E[Yt x B{Yy | F(s A t)}].

Since this is true for all boundel(t)-measurablé;, we have shown that commutation implies that for all
bounded¥(s)-measurable variates;, E{Ys | F(t)} = E{Ys |F((s A t)}, almost surely. This is half the
lemma. The converse half follows from the inclust(s A t) C F(s). O
Proof of Theorem 1.1In light of Lemma 1.2, Theorem 1.1 follows readily. Indeed, forigjl n,m > 1,
1/i«‘»n,j
E|E(V |F(i +n, j)} ‘ F(i,j + m)} — B{ Vi, | 5, )} by Lemma 1.2,
=E{V |F(i,j)} sinceF(i,7) C F(i +n,j).

14



Now, letm T oo and use Doob’s martingale convergence theorem to see that
E[E{v |5+ n,5)} ‘5—“(2‘)} —E{V|5(,j)), as

To finish, letn T co and appeal to Doob’s theorem once more. O

As a consequence of Theorem 1.1, we obtain the important maximal of R. Cairoli.

Theorem 1.3 (Cairoli's Maximal inequality) Let ¥ be a commuting filtration and consider a t
parameter martingale\/ = {M; ;; i,j > 1}.

@) Ifp>1,foraln,m>1,

P _P N\ p
E{ (iﬁ%m)\MZ,ﬂ } < (p_ 7)) E{[ M m 7}

(i) Forp =1, we have

€ 2
E{  max [Mil} < (o53)" [0+ B Mo | iy (Mo}

e —

| will only prove (i), which is the part we need for these lecturéalhenp = 1, things are only a little
trickier; cf. MPP Chapter 1 for detalils.

Proof of (i) Note that for all(i, j) <(n,m), M; ; = E{M, | F(4, )}, almost surely. Owing to Theorem
1.1,
My = E[E{ My |F'0)} | ()}, V(.5 <(n,m), as.
Consequently, by the conditional form of Jensen’s inequality,
T;

oMl < mac B max | E( M, |5 (0)} | 2G) ), as.

By Doob’s maximal inequality for 1-parameter martingaleg, if 1,

P \p
E{ max |M;;]P} <(——)" maxE{|T;]P
{(Z,J)%(n’m)’ 417 ( 1) e {177}

- (2 B B Mo |70}

p— i<n

TIn fact, we will only need the = 2 case.
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Apply Doob’s inequality again to finish. O

SOMETHING TO TRY: Let X; ; be i.i.d. random variables with mea@nand consides,, ,, = > > X ;.
(,5) < (n,m)
Show thatS = {5,,,,; n,m > 1} is a 2-parameter martingale with respect to a commuting filtration.

There is also a theory &f-parameter reversed martingales that can be used to prove the following in-
triguing law of large numbers.

Theorem 1.4 (R. Smythe)Let X; ; be ii.d. random variables with meapn, and consider the tw

parameter random wal,, ,, = > > X; ;. Then,
(i.5) < (n,m)

Xi1 € Llog L(P) = IP{ lim —% = ,U,} = 1, whereas

Xi11 ¢ Llog L(P) = IP’{ limsupM = +oo} =1.

SOMETHING TO TRY: Check, using the Borel-Cantelli lemma, that

X
Xi1 ¢ Llog L(P) < IP’{ limsupM = +oo} =1

n,m—oo NIM

Show that this implies the second half of Smythe’s theorem.

| will append Chapter 2 of MPP to illustrate two examples of martingale theory in classical analysis: one
to differentiation theory (the differentiation theorem of Lebesgue, as well as that of Jessen, Marcinkiewicz
and Zygmund), and another to the the Haar function expansion of the elemértgmfl]").
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Lecture 4

Capacity, Energy and Dimension

We now come to the second part of these lectures which has to do with “exceptional sets”. The most obvious
class of exceptional sets are those of measunehere the measure is some nice one. As an example,
consider a compact s& c R?. One way to construct its Lebesgue measure is as follows: dobgrsmall
boxes, compute the volume of the cover, and then optimize over all the covers. That is,

|E| = lim inf { > [diam(E;)]? : Ey, E,. .. closed boxes of diametet & with U; E; 2 E}

e—0t

7

Here, we are computing the diameter of the box as twic€ imdius; i.e., it is the length of any side. This
is equivalent to the usual definition of Lebesgue’'s measure, although it is long out of fashion in standard
analysis courses.

1 Hausdorff Dimension and Measures

The first class of exceptional sets that we can discuss are those of Lebesgue’s eakuoairse. But,
this is too crude for differentiating amongst very thin sets. For example, consider the rafip@alsvell as
Cantor's tertiary se€. While they are both measuéesets,C is uncountable, whered$ is not. We would
like a concrete way of saying th@t is larger thar(Q, and perhaps measure how much larger, as well. There
are many ways of doing this, and we will choose a route that is useful for our probabilistic needs. First,
note that for anyx > 0, we can define the analogue |@| as above. Namely, define for any compact set
E C Re,

Ho(E) = lim inf{ Z[diar‘r(Ei)]a : E1, B, ...closed boxes of diametet ¢ with U; E; D E}

e—0t

2

This makes sense evemif< 0.
The set functiori,, is called then-dimensionalHausdorff measureThis terminology is motivated by
the following, which is proved by using the method given to us by Carathfy:
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Theorem 1.1 The set functiori,, is an outer measure on Borel subset&®8f For all a > d, Ho(E) =0
identically. On the other hand, when < d is an integer,H,(F) equals then-dimensional Lebesgu

measure of Borel sdf.

Remark For the above to hold, we have usé&d balls (i.e., boxes). If you us€&-balls in the definition
instead, you will see that for integral H,, equalsv, timesa-dimensional Lebesgue’s measure, whege
is the volume of am-dimensional ball of radius. O

Hausdorff dimensions provide us with a more refined sense of how big a set is. Note that for any compact
(or even Borel, say) s, there isalwaysa critical o such that for all3 < «, Hz(E) = 0, while for all
B > a, Hg(E) = 4o0. This is an easy calculation. But it leads to the following important measure-theoretic
notion of dimension:

dim(F) = inf{a : Ho(E) =0} = sup{a: Ho(F) = o0}

This is theHausdorff dimensionf E. If E C R? is not compact, defindim(E) assup,,»; dim(E N
[_nvn]d)'

How does one compute the Hausdorff dimension of a set? You typically proceed by establishing an
upper bound, as well as a lower bound. The first step is not hard: just find a “good” coggririgiameter
less thare, and compute _, [diam(E;)]“. Here is one way to get an upper bound systematically; other ways
abound.

Suppose we are interested in computing the Hausdorff dimension of a given compBctsft, 1]¢.
Fix areal numbern > 1, and defineE; = [, ZH[, for integersd < j < n. Then, it is clear that the

n

diameter of eact; is no more tharg, while U;E; > E. So,

HalE) < (5) Nl ),

whereN,,(E) = > <<, H{Ijn N E # @} is the number of times the intervalg,, contains portions of
E. Therefore, if we can find such thatim sup,, n=®N;,(E) < 400, we havedim(E) < «." Incidentally,
the minimala such thalim sup,, n=*N,,(F) < 4oc is the so-calledipper Minkowski (or box) dimension
of E. If we write the latter aslim , (E'), we have shown that

dim(F) < dim,, (F). (1.1)

If we replaceE; by ad-dimensional box of the fornfit, 2LtL[x ... x [ 2atl[ gnd repeat the procedure,

n’> n

we obtain the upper Minkowski dimensiondrdimensions, and Eg. (1.1) remains to hold.

fWe do not require: to be an integer here.
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We now use this to obtain an upper bound for the tertiary Cantd€ s€irst, let us recall the following
iterative construction o€: let Cy = [0,1]. Now, remove the middle third to obtail@; = [0, ] U [2,1].
Next, remove the middle thirds of each of the two subintervals t€get [0, 3]U[2, 2]U[S, ZJU[E, 1], and
so on. In this way, you have a decreasing sequence of compact subéets,@fnd, as suchC = N,,C, isa
nontrivial compact subset @@, 1]. At thenth level of constructionC,, is comprised o™ intervals of length
37". Therefore|C,| = (3)" — |C| = 0. On the other hand, we just argued that there2srboxes, of
diameter no greater than (in fact, equal 38)that coverC. Therefore, we have shown th&f- (C) = 2™.

In particular, for anya > logs(2), imsup,, o (37™) *Nam(E) = lim,,_.o 37"*2™ = 0. So that,
after a little work, we getlim , (F) < logs(2). In fact, it is easy to see, by the same reasoning, that

dim,/(E) = logs(2). In any event, we obtain the following:

In2

(1.2)

We will show that this is sharp in that the above inequality is an equality. But first, a questilonnot
stick to Minkowski dimensionf?is certainly easier to compute than Hausdorff dimension, and at first sight,
more natural. To answer this, try computidign,, (Q), or dim,, of any other dense subset|[6f 1]¢ for that
matter! You will see that the answeris On the other hand, it is not hard to show thdain(E) = 0 if E'is
countable, for then we can write = {r;} and note tha{r; } is a cover ofE' with diameter less than This
seemingly technical difference is really a big one.

Now, to the lower bound fodim(C). Obtaining lower bound on Hausdorff dimension is, in principle,
very hard, since you have to work uniformly over all covers. What makes things difficult is that there are
alot of potential covers!

The ingenious idea behind obtaining lower bounds is due to O. Frostman who found it in his Ph.D. thesis
in the 1935! Namely,

Theorem 1.2 (Frostman’s lemma) Suppose we knew that the compact/searries a probability measu
w that is Holder-smooth in the following sense: there exists> 0 and a constantC' such that for al
r e (0,1),

w(B(y,r)) < Cr?,

for u-almost ally, whereB(y, r) is the/>-ball of radiusr abouty € R?. Then,dim(FE) > a.

There is a converse to this that we will only need once, and will not prove, as a result; for a proof, see
Appendix C of MPP.
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Theorem 1.3 (Frostman’s Lemma (continued))Supposelim(E) > « > 0. Then, for eaclt < a, there
existsy € P(E) such that
p{B(z,r)}

< .
B +00

sup sup
zeR4d re(0,1)

Proof | will prove this when instead gfi-almost allz, the lemma holds for alt. The necessary modifica-
tions to prove the general case are technical but not hard.
Fixe € (0,1), and consider any covéf;, Es, ... of diameter< . Note that

L= p(E) <D p(B) < €Y [diam(E;)],

Optimize over all such covers, and tet— 0, to see that < 2CH,(E). The theorem follows, since this
shows that for any} < «, H(E) = +o0. (To prove in the general case, note thai(#;) is not less than

C[diam(E;)]*, we can covel; by at mos2? compact intervals) i, . . ., F} 54 of diameter less than twice
that of E;, such thatu(Fj ) < C[diam(F};)]* < 2¢C[diam(E;)]*. Thus,u(E;) < 20T4C[diam(E;)]®,
which is good enough.) O

We use this to complete our proof of the following.

Proposition 1.4 If C denotes the tertiary Cantor selim(C) = 2,

In3

Proof In light of what we have already done, we only need to verify the lower bound on dimension. We
do this by finding a sufficiently smooth measure @n Our choice is more or less obvious and is found
iteratively as follows: construct the smoothest possible probability measymn C,, and “take limits”.

Now, the smoothest and flattest probability measur€gris the uniform measure,,. It is easy to see that
forall z € [0, 1],

pn(fx — 37",z +37"]) <277 = (37 I3, (1.3)
This is suggestive, but we need to work a little bit more. To do so, we next note that, thare nested:

We write C,, = U, , wherel,,, is an interval of lengttl8~™. The nested property of the,’s is the
following, which can be checked by induction:

Vn>m,Vj=1,...,2": pn(Ljm) = pon(Ljm) =27
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Standard weak convergence theory guarantees us of the existence of a probability mgasuithe com-
pact selC such that foralln > 1and all; = 1,...,2™,

froo(Ljm) = pm (Ljm) =27
Moreover, Eq. (1.3) extends jo,,. Namely, for allz € [0, 1] and alln > 0,
foo([z — 37", 2+ 37")) < (37™)n%/ 3,
Now, if 7 € (0,1), we can findr > 0 such thaB—"~! < r < 37", Therefore,

SUp oo ([ — ryx + 7)) < sup poo([x — 37" 2 +37"]) < (37")“‘2/1“3 < (3r)ln2/ln3.
X X

So, we have found a probability measurg on C, that satisfies the condition of Frostman’s lemma with
C = 32/n3 — 2 anda = In 3/1n 3. This completes our proof. O

2 Energy and Capacity

Suppose: is a probability measure on some given compact/set R?. We will write this asy € P(E),
and define for any measurable functipn £ x £ — R, U {oc},

&) = [ [ £l utdo) uiie).

This is theenergyof ;. with respect to the gauge functigi it is always defined although it may be infinite.
The following energy forms are of use to us:

Energy, (1) = / & — |~ p(de) pu(dy),

where|z| = maxi<;j<q |z;| for concreteness, although any other Euclidean norm will do just as well. This
is the so-calledv-dimensionaBessel-Riesz energy .. The question, in the flavor of the previous section,
iswhen does a sdf carry a probability measure of finite energy® facilitate the discussion, we define the
capacityof a setF by

Cr(F) = inf Er(p 71, and in particular,
apa( ) [ueli]’n( ) ”erg}’a(ﬂ)]

The above is Gauss’ principle of minimum energy. Next, we argue that there is a minimum energy measure
called the equilibrium measure. Moreover, its potential is essentially constant, and the constant is the energy.
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Theorem 2.1 (Equilibrium Measure) SupposeE is a compact set iR such that for somex > 0,
Cap,(E) > 0. Then, there existg € P(F), such that

Energy, (1) = [Capa (E)] o

Moreover, foru-almost allz,

/ |z —y[~* u(dy) = Energy,, (1)

Proof By definition, there exists a sequence of probability measufresll supported orF, such that (i)
they have finite energy; and (ii) for all > 1, (1 + 1)[Cap, (E)]™! > Energy,(1n) > [Cap,(E)]7". Let
u be any subsequential limit of the,'s. Sinceu € P(E) as well,Energy,, (1) > [Cap,(E)]~!. We aim to
show the converse holds too. By going to a subsequehatng whichy,,, converges weakly tp, we see
that for anyry > 0,

n/—oo

_ T = lim T — | (dx , 3 _1'
//Ifc—yIZm |z —y|™ p(dz) pu(dy) = 1 //x_y2r0| Y|~ i (d) o (dy) < [Cap, (E)]

Letry | 0 and use the dominated convergence theorem to deduce the first assertion. For the second asser-
tion, i.e., that the minimum energy principle is actually achieved for some probability measure.

Now, consider

¥, = {e e B [lo—al ™ uldy) < (1= mEnergya(n)},  ne (0.1)

We wish to show that(Y,,) = 0 for all » € (0,1). If this is not the case for somge (0, 1), then, consider
the following
CIAR )
(o) = =~
*) =)

Evidently,( € P(F), and has finite energy. Define
Ae=(1—e)u+e(, e €(0,1).

Then, )\ is also a probability measure d# and it, too, has finite energy. In fact, writing = ©—e(u— (),
a little calculation shows that

Energy,(\:) = Energy,, (1) + eEnergy, (1 — ¢) — 25/ |z — |7 u(dz) [p(dy) — ¢(dy)]-
(The energy of: — ( is defined as ijs — ¢ were a positive measure.)
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Sincen minimizes energy, the above is greater than or equBhtegy , (1). Thus,
Energya (1 — ¢) = 2¢ [ [ o =yl ulde) [n(dy) ~ ()
Divide by e and lete — 0 to see that
Enerey. (1) < [ o~ ol u(de) ¢(dy).

But by the definition ofY,,, the right hand side is no more th@h— n)Energy,, (1), which contradicts the
assumption that(Y,,) > 0. In other words,

/’x — 4|~ u(dy) > Energy,(n),  p-as.

It suffices to show the converse inequality. But this is easy. Indeed, suppose

() = / = — 4 p(dy) > (1 + n)Energy, (1),

on a set of positivegi-measure. The function — &u(z) is thea-dimensional potentiabf the measurg.
We could integratedyu] to get the desired contradiction, viz.,

Enerey (1) = | On(a)p(de) + [ ®ula) ()

> (14 m)Energy, () - (@) + [ Ou(o) ulde),

n

where®,, = {z : &u(x) > (1 + n)Energy,(1)}. Therefore, by Theorem 2.1 on equilibrium measure,
Energy, (1) > Energy, ()| (1+n)u(©y) + (0} |

= Energy, (1) [1 + 77#(95)} )

which is a contradiction, unlegg©,,) = 0. This concludes our proof. O

SOMETHING TO TRY: The a-dimensional Bessel-Riesz energy defines a Hilbertian pre-norm. Irgleed,
define M, (E) to be the collection of all measures of finitedimensional Bessel-Riesz energy Bn On

this, define the inner product,
) = [[ 1= o172 uta) vty

Check that this defines a positive-definite bilinear form/efy,(E) if o € (0,d). From this, conclude th
forall u,v € My (E), (u,v)? < Energy, (1) - Energy,, (v). This fills a gap in the above proof.
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Thecapacitary dimensionf a compact seE ¢ R? is defined as

dim.(E) =sup {a: Cap,(E) > 0} =inf {a: Cap,(E) = 0}.

Theorem 2.2 (Frostman’s Theorem)Capacitary and Hausdorff dimensions are one and the same.

Proof Here is one half of the proof: we will show that if there exists> 0 and a probability measuygeon
E, such tha€nergy,, (1) < +oo = dim(F) > «. This shows thadlim.(F) < dim(F), which is half the
theorem.

By Theorem 2.1, we can assume without loss of generalityitiigan equilibrium measure. In particu-
lar,

(B, ) < r / & — 4] p(dy) = r*Energy, (1),

u-almost everywhere. Frostman’s lemma (Theorem 1.2) showslihdt”) > «, as needed.
For the other half, we envoke the second half of Frostman’s theorem (Theorem 1.3) to produce for each
8 < dim(F) a probability measurg € P(F), such that

w(B(z,r)) <CrP,  vzeR: re(0,1).
But if D denotes the diameter &f,

I~T

[en]

Energy (1) = J[ v u@ntay

J=Y 21 D<o —y|<279D

20+ D=7 sup p(B(z, 277 D)

o,

=0 z€Rd
< C2YDP Z 21798
j=0
which sums ify < 3. Thus, we have shown that for all< dim(F), Cap,(E) > 0, i.e.,dim.(£) > v for
all v < dim(E), which completes the proof. O

3 The Brownian Curve

Next, we roll up our sleeves and compute the Hausdorff dimension of a few assorted and interesting random
fractals that arise from Brownian considerations. Our goal is to illustrate the methods and ideas rather than
the final word on this subject.

Throughout,B = {By; t > 0} denotes Brownian motion iR?. Recall also thaB3 is a strong Markov
process, and that
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B hits points iffd = 1,i.e., 3t >0: By =0 < d=1.

In particular, note that wheth= 1, the Brownian curve has full Lebesgue measure, and also full dimen-
sion. On the other hand, wheh> 2, the Brownian curve has zero Lebesgue measuesy(k theorem),
despite the following result.

Theorem 3.1 If B denotesi-dimensional Brownian motion, whede> 2, dim B(R;. ) = 2, a.s.

Proof We do this in two parts. First, we show théitn B(R,) < 2 (the upper bouny and then we show
thatdim B(R;) > 2 (the lower bounyl In any event, recall that > 2.

Proof of the upper boun&ecall that for any interval ¢ R?,

gd—2, ifd>3

In; (1), ifd=2 G-

P{B[1,2] NI # @} < ck(|I]), wherek(e) = {

We will obtain this sort of estimate, in the more interesting case of Brownian sheet, in the last lecture. In
fact, one can show that the constartepends only o/, as long ad C [~ M, M]?. Considerly, ..., I,
cubes of side}, such that (i)fy N 17 = @ if i # j; and (i) U?illj = [0, 1]¢. Based on these, define

B — I; if IJQB[1,2]7A®
" 1o, otherwise '

Note thatE, ..., E,. is a(+)-cover of B[1,2] N [0, 1]¢. Thus,

nd

Ha(B[1,2]N[0,1]%) < lﬂgfzn_al{gnmm];&@}-
=1

Consequently, as long as> 2,

d

E{H.(B[1,2] N [0, 1]d)} < clim ianniO‘ﬁ(%) = climinfndfo‘n(%) = 0.
7j=1

n—oo 4 n—00

In particular,dim(B[1,2]N[0,1]%) < 2, a.s. Similarlydim(Bla,b] N [-n,n]?) < 2, a.s. forany) < a < b
andn > 0. Letn T oo, a | 0 andb 7 oo, all along rational sequences to deduce that B(R, ) < 2,
a.s. This uses the easily verified fact that wheneleC A, C --- are compact, and i, (A4;) = 0, then
Ha(Ujdj) = 0.
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Proof of the lower boundror the converse, we will show thdtm B[1, 2] > 2, and do this by appealing to
Frostman'’s theorem (Theorem 2.2). To do so, we need to define a probability, or at least a finite, measure on
the Brownian curve. The most natural measure that lives on the cuf@.ol < s < 2} is the occupation
measure:

2
@(E) —/1 1{BS€E} ds.
With this in mind, note that for ang > 0,
2 2
Energy, (0) :/ |z — y|”* O(dz) O(dy) :/ / |Bs — B|~“ dsdt.
1 1

By Frostman’s theorem, it suffices to show tfigEnergy ,(0)} < +oo forall 0 < a < 2. But this is easy.
Indeed, note that

2 2 2 2
E{Energy,(0)} = 2/ / E{|B;—s| "} ds dt = 2/ / it —s|72 dsdt x E{|Z|7},
1 s 1 s

whereZ is ad-dimensional vector of i.i.d. standard normals. Since: 2, the double integral is finite. It
suffices to show thadt{|Z|~*) < +o00. But

AR _/0 P{|Z]® > A} d)
<1 +/ P{Z]"® > A} dA
1
1 1
—1+a/ P{|Z| < u}u="" du (u=A"=)
0
1
_1 +a/ P{1Z1] < u}]“u" du.
0

1

ButP{|Z,| <u} = (2m)"2 [*, e~2*" d\ < u. Hence, usingl > 2 > a,

< +00,

1
E{|Z|™*} <1 ot dy =
12y < 1o [ wielan= 5

as promised. O

Here is a slick proof of Bvy’s theorem alluded to earlier.

Theorem 3.2 (P. Levy) If B is Brownian motion iR and ifd > 2, B(R, ) has zero Lebesgue’s meas

a.s.
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Proof I will prove this whend > 3 where things are alot simpler, and appeal to an argument that, in physics
literature, is calledyroup renormalization Tacitly held, throughout, is the fact thB{\;(B(0,t))} < oo;
this is a ready consequence of the easy estifitap ., | Bs|¢} < +oc.

If \q denotes Lebesgue’s measureRsh note that

E{Aa(B(0,2))} <E{Aa(B(0,1))} +E{Xa(B(1,2))}.

We make two observations(i) E{\;(B(1,2))} = E{\s(B(0,1))}; and (i) by Brownian scaling,
E{\;(B(0,2))} = E{\s(v2B(0,1))} = Q%E{)\d(B(O, 1))}, thanks to the scaling properties af;.
Combining these observations, we @éﬁE{Ad(B(O, 1))} < 2E{\4(B(0,1))}, which is impossible un-
lessE{\;(B(0,1))} =0, sinced > 3.

(A few words about the = 2 case] levy's theorem is harder to prove when= 2, and uses the estimate
(3.1) and a covering argument. O

4 Brownian Motion and Newtonian Capacity

We now look at an elementary connection between three-dimensional Brownian motion and Newtonian
capacity. LetB = {By; t > 0} denote three-dimensional Brownian motion, and consider the linear operator

Uf(z) = ]E{ /Ooo f(Bs + ) ds}.

Here,z € R andf : R* — R, is measurable. We can easily evaluate this as follows. A few liberal doses
of Fubini-Tonelli yield:

[
o0 e 2s
Z/lf(ac)_/o /Rgf(ar:—l-z)(2 %dzds

7Ss)

1 _
— o [ el ) dy
T JR3
Now, suppose is a probability density function on some (say, nice compactfiset R3. Then U/ f(x) is

the expected amount of time spentfiiweighed according t¢, and starting at € R?. Now, suppose the
Brownian motion itself starts according to the pdfThen, this expected time is

Lut@i@e =1 [ -yl ) dy @)

You should recognize the right hand side(d4s)~! times the Newtonian energy of the meastfite) dz.
In summary, if we start Brownian motion iff according tof, the expected amount of time spentih

27



weighed accroding td, if preciselyﬁ Energy, (f), wheref(x) is identified with the measurg(z)dx here.

SOMETHING TO TRY: Check that wheneveB is Brownian motion inR? (d > 3) that starts according
some pdff,

/Rd ]E{ /0°° f(Bs+x) ds}f(x) dx = cEnergy;_(f),

and compute. Why does this fail whed =2 ord = 1?

5 Riesz Transforms andH, Spaces

Below, if will prove that ifa € (0, d), the Fourier transform of the functidkf’ > ¢ — |||~ is a constant
multiple of ||¢||~(?~). We will compute this constant also. However, let us see what this implies for energy.
Recall that

Enerey, (1) = | Rule) ulde).

whereRpu(z) = [a |r — y|~ u(dy). We are only interested in whether or not the above is finite for some
measureu. Thus, we cheat at the last moment and replaceth@orm by ¢? norm to getEnergy,, (1) =
Jga Ru(x) p(dz), where

Ru(o) = [ e =l )

is the so-calledv-dimensionalRiesz transfornof . Using obviousL? notation,Energy,, (1) = (Ru, ).
Having noted the.? connection, we apply Fourier transforms (via Plancherel) to see that

Energy,, (1) = (27) (R, ).

But, R is a convolution operator that can be identified with the keR@l) = ||a|~“. Thereforej/zﬁ = R
On the other hand, we just mentioned that the Fourier transforR isfc||¢||~(@~), wherec = C,, from
Lemma 5.1 below. Thus, whene (0, d),

Enerey, (1) = () e [ 1" O ds.

Thus,Energy (1) is equivalent (i.e., converges iff the following does) to fiig_,, -norm:
2

d—a
Iy = / B[+ 2} ae.
2 R4

Thus we have linked the computations of the lecture of DOBNT earlier this week to energy computa-

tions (in his notation;y = —%(d — «).) If you want to have a more in-depth look at connections to energy
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and dimension, try the following.

SOMETHING TO TRY: Let X = {X;; ¢t > 0} be an isotropic ely process ilR?. That is, a process wi
i.i.d. increments whose characteristic function is givenily*t} = exp{—%|¢||*}. It is known tha
a € (0,2] is necessary. Whem = 2, X is just Brownian motion.

Suppose further that € (0, d), and define the weighted occupation measure

OE) = /OOO 1p(Xs)e *ds.

(i) Check that its Fourier transform @(¢) = JoZ e Xem ds.

(i) Use the above to show thay |0(¢)[2} = {1]|¢]|* + 1} " In particular, for any3 € (0, d),
B{ Energys(0)} = (2n) % [ I€I=4 {31 + 1} " de.

(i) Conclude that wheneves < a, Energy3(0) < +o0, a.s.

(iv) Use Frostman’s theorem to show that, with probability ofiea( X (R;)) > «. One can show th
this is sharp. That is, whem € (0,d), dim(X (R} )) = «, a.s. Whem = 2, we did this last pa
explicitly in Theorem 3.1. Here, the strategy is the same, but we need hitting probability estimgtes for
stable processes.

Let me conclude with the following promised calculation, then. Henceforth, foryany,

Wy (&) = (1€

— _x _d
Lemma 5.1 For anyy € (0,d), ¥, = &-W4, whereC, = 2™ 27 2I(51)/T(2).

Proof We will relate the mention Fourier transform to the Laplace transform of a Gaussian, first. This may

seem like magic, but if you apply some more Fourier analysis (namely, Bochner's subordination), you can
explain this more clearly; cf. MPP for the latter.

Note that ford > 0 andg > —1, [~ e~9t# dt = 6=(HAT(1 + B). In particular,

/ et 48 gt — ¢]|-+2A (1 + B).
0
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Now, take a well-tempered functignand consider

[ F@el e b = s [ ([ e )

(In truth, they should be a tempered distribution.) Apply Parseval's identﬂ@;f) = (27)"%p, f) tO
deduce

= 428) g 21T [ g e ~ll€l? /2t
[ F@eree = et [T [ e g ae) i
(

(2 )@ 00 e—IIEH /2t e
525 L so(f)(/ 19 dr) de (- = 14
_ () ~49t--1p(d _ g d—(26+2)
= iy @) R G -1 [ el e
Let25 + 2 = ~ to finish. O
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Lecture 5

Brownian Sheet, Potential Theory, and
Kahane’s Problem

Recall that a Brownian sheét = {B(s,t); s,t > 0} is just a real process defined as
B(s,t) = W([0,s] x [0,¢]), Vs, t >0,

whereW denotes white noise di?. We will refer to this ane-dimensional Brownian sheetstress that
the process takes its valuesin

By ad-dimensional Brownian sheatre mean thel-dimensional procesB = {B(s,t); s,t > 0} such
that By, Bs, ..., By are i.i.d. (1-dimensional) Brownian sheets. Of couBe= {B;(s,t); s,t > 0}.

1 Polar Sets

The following theorem, due to S. Kakutani, is the cornerstone of probabilistic potential theory.

Theorem 1.1 (S. Kakutani) Let b denoted-dimensional Brownian motion, and consider a fixed comgact
E C RY. Then,
P{3t >0: b € E} >0 < Cap,_o(E) > 0.

The above relate®’ to what is called golar set Probabilistically, a se¥ is polar for a process
X = {X;; t € T} if with positive probability,3¢ € T': X; € E. Thus, Kakutani's theorem characterizes
polar sets for Brownian motion. This notion of polarity matches with the one from harmonic analysis, which
has to do with the removable singularities of the Dirichlet problem off the set. Amongst other things, fairly
routine calculations show that tlhedimensional capacity of a ball of radiggs of orders® if o > 0, and
[log(1/¢)]~1if « = 0. That is, Theorem 1.1 contains the hitting probability estimate (3.1) of Lecture 4.
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A more recent result, this time for the sheet is,

Theorem 1.2 (D. Kh. and Z. Shi) If E is a compact set il!, P{B(R2 )N E # @} > 0iff Cap,_,(E) >
0. In fact, for anyM > 0, there existg; and ¢y, such that for all compack C [—M, M]d,

c1Capy_4(E) <P{B[1,2> N E # @} < c3Cap,_4(E).

We will prove this shortly. However, let me mention a variant: suppse .., X are i.i.d. isotropic
stable processes & all with indexa € (0, 2]. This means that eacki, is anR?-valued Lévy process with
characteristic function

E{e€Xe®} —exp (- 1)¢|*), VeeR,t>0,0=1,...,d

The% is to ensure that when = 2, X, is standard Brownian motion. Thedimensional,N-parameter
additive stable procesds the random field

X(t)=X1(t1)+ -+ Xn(tn), VteR).

Theorem 1.3 (F. Hirsch and S. Song; MPP Ch. 11)f X is an N-parameterd-dimensional additive st

ble process of index, and if E c R? is a given compact set, thénis polar for X iff Cap,_,n(E) > 0.

The above, together with the energy/covering arguments of Lecture 4 (cf. Theorem 3.1 there), this shows

Theorem 1.4 If X is an N-parameterd-dimensional additive stable process of index

dim(X(RY)) =aN Ad, as.

The above two theorems provide us with processes that correspond to arbitrary dimensions and capaci-
ties.

2 Application to Stochastic Codimension

The preceeding has a remarkable consequence about a large class of random sets. We say that a ran-
dom setX c R? hascodimension3, if 3 is the critical number such that for all compact séts— R¢
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with dim(E) > 8, P{X N E # @} > 0, while for all compact set¥ c R? with dim(F) < £,
P{X N F # @} = 0. The notion of codimension was coined in this way in Kh-Shi '99, but the essen-
tial idea has been around in the works of Taylor '65, Lyons '99, Peres ‘95,

When it does exist, the codimension of a random set is a nonrandom number.

Warning: Not all random sets have a codimensi'n.

As examples of random sets thdi have codimension, we mention the following consequence of The-
orem 1.3:

Corollary 2.1 If Z denotes an(N, d)-additive stable process of index € (0,2], codim(Z[1,2]") =

d — aN.

We now wish to use Theorem 1.3 to prove the following result. In the present form, it is from MPP Ch.
11, but ford = 1, it is from Kh-Shi '99.

Theorem 2.2 (MPP Ch. 11)If X is a random set ilR? that has codimensiofi € (0, d),

dim(X) = d — codim(X), a.s.

That is, in the best of circumstances,

( dim(X) + codim(X') = topological dimension]

A note of warning: ifX is not compactdim(X) can be defined byup,,~; dim(X N [-n,n]9).

The proof depends on the following result that can be found in the works of Yuval Peres '95, but with
percolation proofs.

Lemma 2.3 (Peres’ lemma)For each € (0,d), there exists a random satz, whose codimension $.

Moreoverdim(Ag) = d — (3, almost surely.
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Proof Let Ay = Z(RY), whereZ is an (N, d)-addtive stable process. The result follows from Corollary
2.1 and Theorem 1.4. O

Proof of Theorem 2.2By localization, we may assume thatis a.s. compact. Lekg = u;ﬁlAg, where
Aé, A%, ... are iid copies of the sets in Peres’ lemma, and are all totally independent of our rand&m set
Then, by Peres’ lemma and by the lemma of Borel-Cantelli,

0, on{dim(X) < g}

P{AsNX A£a|X} = .
s NX# 21X} {1, on{dim(X) > 8}
On the other hand, by the very definition of codimension,

0, if codim(X) > d — 8 = dim(Agp)

1P>{AﬂﬂX#Qj‘Aﬂ}_{>O, if codim(X) < d — 8 '

Take expectations of the last two displays to see that foriaay(0, d),

codimX) <d - = dim(X) > f3, a.s.
codimX) >d - = dim(X) < f3, a.s.

This easily proves our theorem. O

3 Proof of Theorem 1.2

We begin with an elementary, though extremely useful, lemma.

Lemma 3.1 (R. E. A. C. Paley and A. Zygmund)If Z > 0 a.s., and ifZ € L?(P),

[E{Z} |
B{Z2}

P{Z >0} >

where0 = 0 = 0.

Proof By the Cauchy—Schwarz inequality,
E{Z} =E{Z; Z >0}
< VE{Z2}P{Z > 0}.
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Square and solve. O

Roughly speaking, the strategy of proof of Theorem 1.2 is to show&iBt2]? intersectsE iff the
occupation measure evaluated at sofne P(E) is large, wheref € P(E) means thaff is a probability
density function supported afi, where the latter is given by

o(f) = F(B(s, 1)) ds dt.
1,22

Lemma 3.2 For eachM > 0, there exists a constant= ¢(M) > 1 such that for all pdf'sf on[—M, M]?,

E{O(f)} = ¢

Proof The law of the variateB (s, t) is v/stZ, whereZ = (Zy,...,Z;) is a vector of i.i.d. standard nor-
mals. The lemma follows from direct compmutations, since this pdf is easily seen to be bounded below on
[—M, M]%. O

Lemma 3.3 For eachM > 0, there exists a constant= c¢(M) > 1 such that for all pdf’sf on[—M, M]¢,

E{|O(f)|*} < cEnergy,_4(f)-

To develop Kakutani's theorem by the methods of this lecture, start with

SOMETHING TO TRY: Letb = {b;; ¢ > 0} denoted-dimensional Brownian motion. Then, show that for
eachM > 0, there exists a constant= ¢(M) > 1 such that for all pdf'sf on [—M, M]<,

| /1 " f(be) ds

2} < cEnergy,; o(f).

Also show that there exists= c(M) > 0, such that for all pdf'sf on [—M, M]9,

E{ /12f(bs)ds} > .
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Proof of Lemma 3.3Note that

E{|0(f)|*} = IE f ))f(B(t))dsdt}

f (sAt)+&)f(B (s)kt)+§1)dsdt}

where
& = B(s) — B(s A t), and
£ = B(t) — B(s A t).

Note that(i) & and &, are independent; an@d:) the pdf of B(s A t) is bounded above by a constant,
uniformly for all s, t € [1,2]?. Indeed, the latter pdf, at € RY, is

_d ] _d Hx”Q
4 d d _ <1.
(2m) " 2(s1 At1) " 2(s2 Ata) eXP( 2(31/\t1)(82/\t2)> =1
Thus,
on < [, [, [ e
22 S Jr

12
:]E /122/[12]2/Rdf(x)f(x+§2—gl)dxdsdt}
_]E /12 /12]2/Rd fz+ B(t) - (s))dmdsdt}.

Now, we proceed to a variance estimate as we did in Lemma 2.2 of Lecture 2fdr Indeed, the variance
of each of the coordinates &f(t) — B(s) is bounded above and below by constant multiplels efs|. This
leads to

T clt—s]
E{|O(f)| }<c/ / / f(x x—i—y)e — dx dy dsdt
1,2]2 J[1,2]2 JRd JRd |_s|§
= cEnergy,_4(f),

after a few more lines of calculations. O
Proof of Theorem 1.2: Lower BoundIf there are pdf’'s supported b¥, choosef to be any one of them
and note that

O(f) >0 = B[1,2*NE # @.
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So, combine this with Lemmas 3.2 and 3.3 to get
P{B[1,2]> N E # @} > P{O(f) > 0}

[E{O()}?
= E(O()1)
> c[Energy_4(f)]

We have used the Paley—Zygmund inequality in the second-to-last line; cf. Lemma 3.1. This holds uniformly
over all pdf'sf on E. ReplaceF by its closes-enlargement,, we get

P{B[1,2]* N E. # @} > | inf Energy,_4(1)]
HEP(E:):
p=absolutely continuous

Any 1 € P(E) can be approximated, in the sense of weak convergence, by absolutely continuaus
P(E:). Alittle Fourier analysis, then, shows thatas- 0, Energy,, (1) is approximable byEnergy,, (u.);
cf. the last section of Lecture 4 for the requisite material on Fourier analysis. On the othePh&t,2]?N
E. # @} — P{B[1,2]> N E # @}, ase — 0. This yields,

P{B[1,2>NE # &} > inf E _ -
{B[1,2] # o} > C[HQ%E) nergy 4 ()]
which equals:Cap,_,(E). O

We now turn to the more difficult

Proof of Theorem 1.2: Upper Bound (sketch)Define the 2-parameter martingdléf by
Mf(t) = E{O(f) [ F(t)},

wheref is a pdf onE., and¥ is the natural 2-parameter filtration 8f. Clearly, for anys € [1, %]2,

Mf(s) :/12]2]E{f )| F(s)} dt

ine E{S(B®)]F(s)}dt
te[1,2]v

:/Wsz E{f(B(t) - B(s) + B(s)) | 5(s)} dt.
te[1,2]V

Now, recall that whenever=s, B(t) — B(s) is independent of (s), and whose coordinatewise variance
is, upto a constantt — s|. A few more lines show that for anye [1, 3]2,

Mf(s) > c® f(B(s)),
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where®u(z) = [palz—y[~ u(dy) if d > 4, Spu(z) = [pa 10g+(‘x y‘) wu(dy),ifd =4, and®u(x) =1,
if d < 4. LetT be any measurable variate [in 3]* U {oo} such thafT' # oo iff 3s € [1, 3] such that
B(s) € E, and in which case3(T) € E. Then, ignoring null sets, we have

Sug Mf(T) > c8f(B(T)) - 1yTtoc}-
S€[1,§]2

Square both sides, and take expectations:

E{ sup [MF(T)"} = B{|& (B(T)[* Lirsoey }
s€(l, 2}

Now, if P{T # oo} = 0, there is nothing to prove. Else, choogés) = P{B(T) € o|T # oo}
(v € P(E)), to see that

E{ sup |Mf(T \}>cﬂz{{®f( )| | T # oo} x P{T # oo}
s€(l,5]?

> | B{ &/ (B( BT)‘Tyéoo}erP’{Tyéoo}
_c(/qsf d:): xIP{T;éoo}.

On the other hand, by Cairoli’s inequality, the left hand side is bounded abovisIBYO(f)|?} <
c'Energy,_4(f), thanks to Lemma 3.3. Combining things, we have, for this spac@lP(E),

cEnergy_4( ‘ /Gﬁf dx >< P{B[L, 3> N E # o}.

This holds for any pdff. Now, choose pdf'sf that converge weakly tp. A little Fourier analysis shows
that we can do this so that the energies of fie also approximate that of, and [ & f(z) u(dz) ~
[ ®u(x) p(dz) = Energy,_4(p). This completes our proof. O

SOMETHING TO TRY: Try and mimick the above sketched proof to show the upper bound in Kak
theorem. You may ignore the Fourier analysis details.

4 Kahane’'s Problem

We come to the last portion of these lectures, which is on a class of problems that | call Kahane’s problem,
due to the work of J.-P. Kahane in this area.
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Kahane’s problem for a random field is: “when doesX (F) have positive Lebesgue’s meastird?
will work the details out for Brownian motion, where things are easier. The problem for the Brownian sheet
was partly solved by Kahane (cf. his '86 book) and completely solved by Kh. '99 inFase2. Recent
work of Kh. and Xiao '01 has completed the solution to Kahane’s problem and a class of related problems,
and we hope to write this up at some point. Here is the story for Brownian motion, where we work things
out more or less completely. The story for Brownian sheet is more difficult, and | will say some words about
the detalils later.

Theorem 4.1 (Kahane; Hawkes)If B denotes Brownian motion iR, and if ¥ C Ry is compact, then

E{|B(E)|} >0 «= Capy(E) > 0.

1
2
1
2

In particular,

dim(E) >
dim(F) <

= |B(E)| > 0, with positive probability
= |B(E)| =0, a.s.

You can interpret this as a statement about hitting proabilities for the level sets of Brownian motion, viz.,
/ P{B~Ya}NE # @}da >0 < Capi(E) > 0.
Rd 2

| will prove the following for Brownian motion. It clearly implies the above theorem upon integration.

Theorem 4.2 Supposer C [1,2] is compact, and fid/ > 0. Then, there exists; and ¢, such that for al
la] < M,

chap%(E) <P{a€e B(E)} < CQCQP%(E).

As a simple consequence of this and Frostman’s theorem, we see that the critical dimenBioh{foy
to hit a set is%. Equivalently, the zero seB~'{0}, has codimensioé. Since the topological dimension of
B~1{0} is 1, by Theorem 2.2,

Corollary 4.3 (P. Lévy) With probability onedim B~1{0} = %
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Proof Without loss of any generality, we may and will assume tat [0, 1].
For anyu € P(E) and for alla € R, define

Jo(u) = (20)° /0 15 acey p(ds).

Then, for everyM > 0, there existg such that

Eel(ré)vl)ae[i%,m {Je ()} = e

sup sup E{|J¢ (u)[*} < Energy:(u).
acR e€(0,1) 2

(4.1)

Now, we apply Paley—Zygmund inequality:
Pla € B(E)} = P{JZ(n) > 0}

[E{72 (1)}
B E{IJ“(M)I }

Energy% (1)

Since this holds for all. € P(E), we obtain the desired lower bound.
Let {F;}+>0 denote the filtration o and consider the martingale

M () = E{J2 (1) | T2}, Ve 0.
Clearly,

M) = o7 [ PUB =l < 2| Fibiulds) - gmmae)

> o) [ PRl < dehud)  Lgaass)

-1 g
> ce /S>t (m A 1) p(ds) - 1B, —aj<s5}

Leto. = inf{s € E: |Bs —a| < 4¢}. This is a stopping time and ofw. < oo},

MO (1) > et At
() > s /[m | u(as)

since all bounded Brownian martingales are continuous. Now, we choaseefully: WLOGP{o. <
oo} > 0 which implies thaju. € P(E), where

pe(o) =P{o. € o] 0. < o0}.
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Thus, by the optional stopping theorem,
1 > E{MZ* (pe); 00 < o0}

) (=

s>t
25 ) (=
2
C
// 7t ,ue(ds) e (dt) - P{o. < oo}.
Fix g > 0 and from the above deduce that foraﬂmall,

& 1 '
123 // |5 — |72 pe(ds) pe(dt) - P{inf | By — 5| < e}

‘sft|>5o

/\ 1 ,ue(ds) pe(dt) - P{o. < oo}

/\ 1 us(ds) pe(dt) - P{o. < oo}

Lete — 0, and envoke Prohorov’s theorem to get P(E) such that

Pla € B(E // s — ¢ p(ds) p(dt)]
Pt

Letdg | O to finish. O

To prove the general result for a Brownian sheet, one needs the properties of the [ptcessd a
time pointt. There ar@” different notions of ‘around’, one for each quadrant centeredaatd this leads to
2V different N-parameter martingales, each of which is a martingale with respect to a commuting filtration,
but each filtration is indeed a filtration with respect to a different partial order. The details are complicated
enough forN = 2 and can be found in my paper in tiieansactions of the AM@999). WhenV > 2, the
details are more complicated still and will be written up in the future. The end result is the following:

Theorem 4.4 (Kh and Xiao '01) If B denoteg N, d) Brownian sheet and& C R} is compact,

E{|B(E)|} >0 <= Capa(E) > 0.

To recapitulate the picture we have, by Theorem 1.2, whern2 N, E{| B(RY )|} = 0. Thus, the above
addresses portions of the range in the remaining low-dimensionaldcas@N. A consequence of this
development is that

dim(E) >
dim(F) <

= |B(E)| > 0, with positive probability
= |B(E)| =0, a.s.

[CIISH IS
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| will end with a related

CONJECTURE SupposeX is an(N, d) symmetric stable sheet with indexc (0, 2) (see below.) Then, f
any compactz ¢ RY, E{| X (E)|} > 0iff Cap(E) > 0.

At the moment, this seems entirely out of the reach of the existing theory, but the analogous result for
additive stable processes, and much more, holds (joint work with Xiao—will write up later.)

To finish: {X;; ¢ € RY} is an(V, d) symmetric stable sheet if it has i.i.d. cooridinates and the first
coordinate has the representati&ip = [ 1 (0<s<1yX(ds), whereX is a totally scattered random measure
such that for every nonrandom measuralilec RY, E{exp[i¢X(A)]} = exp(—21|A| [|£]|*). (Scattered
means that for nonrandom measurafiland A’ in RY , if AN A’ = @, X(A4) andX(A’) are independent.)
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