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Preface

These notes are based on five 1-hour lectures on Brownian sheet and potential theory, given at theCen-
ter for Mathematical Sciencesat theUniversity of Wisconsin-Madison, July 2001. While the notes cover
the material in more depth, and while they contain more details, I have tried to remain true to the basic
outline of the lectures. A more detailed set of notes on potential theory, see myEPFL notes, although
the material of these lectures covers other subjects, as well. MyEPFL notes are publicly available at
HTTP://WWW.MATH .UTAH.EDU/˜DAVAR /LECTURE-NOTES.HTML. Finally, a much more complete theory
can be found in my forthcoming bookMultiparameter Processes: An Introduction to Random Fields, to be
published bySpringer–Verlag Monographs in Mathematics. All references to “MPP” are to this book.

I am grateful to Professor J. Kuelbs for his invitation, and to all the participants for the interest and
support. I also wish to thank theNational Science Foundationfor their continued support, both of my work,
as well as the wonderful Summer Internship Program at theUniversity of Wisconsin-Madison.

Davar Khoshnevisan

July 2001
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Lecture 1

Čentsov’s Representation

A one-dimensional Brownian sheet is a2-parameter1, centered Gaussian processB = {B(s, t); s, t ≥ 0}
whose covariance is given by

E{B(s, t)B(s′ , t′)} = min(s, s′)×min(t, t′), ∀s, s′, t, t′ ≥ 0.

There are many ways to arrive at such a process; one of the quickest is via fluctuation theory for 2-parameter
random walks. Imagine a sequence{ξi,j ; i, j ≥ 1} of i.i.d. random variables that take their values in{0, 1}
with P{ξ1,1 = 0} = P{ξ1,1 = 1} = 1

2 . For instance, think of each “site” (i, j) as “infected” if ξi,j = 1,
otherwiseξi,j = 0. Then, the number of infected sites in a large box[0, n]× [0,m] is

S(n,m) =
∑

1≤i≤n

∑
1≤j≤m

ξi,j, ∀n,m ≥ 1. (0.1)

A natural way to normalize this quantity is to set

ξ′i,j =
ξi,j − E{ξi,j}√

Var{ξi,j}
= 2ξi,j − 1, S′(n,m) =

S(n,m)− E{S(n,m)}√
Var{S(n,m)} =

2S(n,m)− nm√
nm

.

Note thatS(n,m) is a sum ofnm i.i.d. variables, each with mean12 and variance1
4 , andS′(n,m) is its

standardization. Thus, we can replaceξi,j by ξ′i,j everywhere, and assume that Eq. (0.1) holds, where
E{ξi,j} = 0 andE{ξ2

i,j} = 1. With this sudden change of notation in mind,S(n,m) is a sum ofnm
i.i.d. random variables with mean0 and variance1. Thus, by the central limit theorem of De Moivre and
Laplace,(nm)−

1
2 S(n,m) converges in distribution to a standard normal law, asn,m → ∞. Of particular

importance is the case wheren and m go to infinity at the same rate. That is, whenn = bNsc and
m = bNtc, wheres, t ∈ [0, 1] are fixed, butN → ∞. In this case,N−1S(bNsc, bNtc) converges to

1Much of what we do here can be extended to more parameters, but such extensions are not of central importance to these
lectures.
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a mean zero normal law with variance
√

ij. Note that this is the law ofB(i, j), and one can show, in
fact, that in a suitable sense, the entire random function{N−1S(bNsc, bNtc); (s, t) ∈ [0, 1]2} converges
weakly to the random function{B(s, t); (s, t) ∈ [0, 1]2}. To convince yourself, check, for instance, that the
covariance betweenN−1S(bNsc, bNtc) andN−1S(bNs′c, bNt′c) converges, asN →∞, to that between
B(s, t) andB(s′, t′), which ismin(s, s′)×min(t, t′).

In the above model, one can relax the independence assumption to something involving “asymptotic
independence” (e.g., strong mixing, etc.) to obtain more realistic models.

1 White Noise

Recall that a column vectorX = (X1, . . . ,Xm)′ is (nondegenerate)multivariate normalif there exists
an invertible(m × m) matrix A and a sequence of i.i.d. standard normal variatesZ1, . . . , Zm, such that
X = A′Z, whereZ = (Z1, . . . , Zm)′, as a column vector. To compute its law, simply note that for all
m-vectorsξ (written as a column vector),

E{eiξ ′X} = E{eiξ ′A′Z} =
m∏

`=1

E{ei(ξ ′A′)`Z`} = e−
1
2

∑m
`=1(ξ

′A′)2` = e−
1
2
ξ′A′Aξ.

In fact, this makes perfect sense as long asA′A is invertible, regardless of whether or notA is even a square
matrix. Moreover, the density function ofX is then given by

f(x) = (2π)−
d
2
(
det A′A

)− 1
2 exp

{− 1
2x

′(A′A)−1x
}
, ∀x ∈ Rm .

�

�

�

�

From this formula, we immediately obtain that two Gaussian variables that are jointly Gaussian are inde-
pendentif and only if their correlation is0. Moreover, pairwise independence of jointly Gaussian random
variables is equivalent to their total independence.

If T is an arbitrary index set, aGaussian processg = {gt; t ∈ T} is a stochastic process such that for all
finite t1, . . . , tm ∈ T , the law of(gt1 , . . . , gtm) is multivariate Gaussian. (Remember that in these lectures,
all Gaussian laws are centered, i.e., have mean0.) Note that if such a process exists, itscovariance function
(s, t) 7→ Σ(s, t) completely determines its law, where

Σ(s, t) = E{gsgt}, ∀s, t ∈ T.

It is easy to see that ifg exists,

• Σ is a symmetric function.
Proof.Σ(s, t) = E{gsgt} = E{gtgs} = Σ(t, s). �
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• Σ is a positive definite function.
Proof.For allm and for allm-vectorsη, and for alls1, . . . , sm ∈ T ,

m∑
i=1

m∑
j=1

ηiηjΣ(si, sj) = E
{ m∑

i=1

m∑
j=1

ηiηjgsigsj

}
= E

{( m∑
i=1

ηigsi

)2}
,

which is positive.

Conversely, by the Daniell–Kolmogorov consistency theorem, any symmetric positive definiteΣ : T ×
T → R corresponds to a Gaussian process,g, defined on the probability spaceRT endowed with the
product topology and the induced Borel field. This is not a good probability space, but is the best one can
do in general. In any event, we now know that at leastg exists! What it all amounts to is that once we have
a symmetric, positive definite functionΣ, it corresponds to a Gaussian process.

To define white noise, we only need to provide a formula for the covariance functionΣ, and need
to identify T . Let T = B(RN ) denote the collection of all Borel measurable subsets ofRN of finite
Lebesgue’s measure. Moreover, we identify two elements,A1 andA2, of T if the set difference,A14A2,
has zero Lebesgue’s measure.

Define
Σ(A,B) = |A ∩B|, ∀A,B ∈ B(RN ), (1.1)

where| · · · | denotes theN -dimensional Lebesgue’s measure. Clearly,Σ is symmetric. We seek to show that
it is positive definite. But, for allA1, . . . , Am ∈ B(RN ), and allη1, . . . , ηN ∈ R,

m∑
i=1

m∑
j=1

Σ(Ai, Aj)ηiηj =
m∑

i=1

m∑
j=1

|Ai ∩Aj |ηiηj

=
m∑

i=1

m∑
j=1

∫
RN

1Ai(x)1Aj (x) dx ηiηj

=
∫
RN

(
ηi

m∑
i=1

1Ai(x)
)2

dx,

thus proving positive definiteness. This shows that

Theorem 1.1 There exists a Gaussian processW = {W (A); A ∈ B(RN )} whose covariance function is
described by Eq. (1.1).
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The processW is the famouswhite noiseonRN . We begin studying its elementary properties.

Lemma 1.2 If A1, A2 ∈ B(RN ) are disjoint,W (A1) andW (A2 ) are independent. Moreover,W (A1) is a
mean zero normal variate with variance|A1|.

Proof For the first part, note that

E{W (A1)W (A2)} = |A1 ∩A2| = 0.

Since uncorrelated Gaussian variables are independent, the first assertion follows. The second assertion
follows from the definition. �

Next, consider nonrandom disjoint setsA1, A2 ∈ B(RN ), and make a direct calculation to see that

E
{[
W (A1 ∪A2)− W (A1)− W (A2 )

]2
}

= E{[W (A1 ∪A2)]2}+ E
{
[W (A1)]2}+ E{[W (A2)]2}

+ 2E{W (A1)W (A2)} − 2E{W (A1 ∪A2)W (A1 )}
− 2E{W (A1 ∪A2)W (A2)}

= |A1 ∪A2|+ |A1|+ |A2|+ 0− 2|A1| − 2|A2|,
thanks to Lemma 1.2 and the fact thatA1 andA2 are disjoint. Using the latter property once more, we see
that

A1 ∩A2 = ? =⇒ E
{[
W (A1 ∪A2)− W (A1)− W (A2 )

]2
}

= 0.

A similar calculation shows that for generalA1, A2 ∈ B(RN ),

W (A1 ∪A2) = W (A1) + W (A2 )− W (A1 ∩A2), a.s.

One can extend this immediately to a finite number ofAi’s by induction. However, we should recognize
that there is a null set outside which the above fails, and this null set depends on the choice of theAi’s. In
fact, it isnot true thatW is a random measure for almost every realization. However,

Lemma 1.3 White noise is a vector-valued random measure onRN in the sense ofL2(P).

Indeed, for this, you only need to check that whenA1 ⊇ A2 ⊇ · · · are all inB(RN ) and all have finite
Lebesgue’s measure, and if∩nAn = ?,

lim
n→∞ E

{[
W (An)

]2} = 0.

But this is easy.
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2 Brownian Motion

Recall thatB = {B(t); t ≥ 0} is Brownian motionif it is a Gaussian process onR with the covariance
function

Σ(s, t) = E{B(s)B(t)} = s ∧ t, ∀s, t ∈ R+ .

To obtain this from white noise, letW denote white noise onR anddefine

X(t) = W ([0, t]), ∀t ≥ 0.

Then,X = {X(s); s ≥ 0} is a Gaussian process with the same covariance function asΣ above. Thus, it
is Brownian motion. In other words, to obtain properties of Brownian motion, we can assume that it is of
form W ([0, t]). SinceW is a kind of measure, this means that Brownian motion is the distribution function
of white noise onR, viewed as anL2(P)-measure.

3 Čentsov’s Representation

Recall thatB = {B(s); s1, s2 ≥ 0} is Brownian sheetif it is a Gaussian process onR with the covariance
function

Σ(s, t) = E{B(s)B(t)} = (s1 ∧ t1)× (s2 ∧ t2), ∀s, t ∈ R2
+ .

Check that Brownian sheet can be realized as the distribution function of white noise onR2 . That is, ifW
denotes white noise onR2 , t 7→ W ([0, t1 ]× [0, t2]) is Brownian sheet. This representation is due toČentsov,
and while it is simple, it has profound consequences; we will tap into some of them in the next lecture.
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Lecture 2

Filtrations, Commutation, Dynamics

Now, we useČentsov’s representation to study how the processt 7→ B(t) evolves near a given ‘time point’
t = (t1, t2). That is, given a fixedt with t1, t2 > 0, we wish to study the evolution of the 2-parameter
processs 7→ B(t + s). You can think of the proceeding as 2-parameter Markov property.

Throughout, we realizeB(t) in its white noise formulation:

B(t1, t2) = W ([0, t1 ]× [0, t2]), ∀t ∈ R2
+ .

Throughout, we will need the relation4, defined onR2 × R2 by

s4 t ⇐⇒ s1 ≤ t1 ands2 ≤ t2, ∀s, t ∈ R2 .

Note that(R2 ,4) is a partially order set. With this in mind, we can define a sequence of sigma-algebras
F = {F(t); t ∈ R2

+} as follows: for allt ∈ R2
+ ,F(t) denotes the sigma-algebra generated by the collection

{B(s); (0, 0)4 s4 t}. This is afiltration with respect to4 in the sense that

s4 t =⇒ F(s) ⊆ F(t).

Anysequence of sigma-algebras that is increasing with respect to4 is called afiltration.

1 Commutation of the Brownian Filtration

We can always define the minimum operationf onR2 × R2 by

(s f t)i = min(si, ti), ∀s, t ∈ R2
+ , i = 1, 2.

Given this definition, we say that any 2-parameter filtrationG is commutingif for all s, t ∈ R2
+ , G(s)

andG(t) are conditionally independent givenG(s f t). This means that for all boundedG(t)-measurable
random variablesξt, all boundedG(s)-measurable variatesξs, we almost surely have

E{ξt × ξs |G(s f t)} = E{ξt |G(s f t)} × E{ξs |G(s f t)}.
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Theorem 1.1 (R. Cairoli and J. B. Walsh) The Brownian sheet filtration,F, is commuting.

Sketch of Proof Note that for anyt ∈ R2
+ , F(t) is the sigma-field generated by{W (A); A ⊆ [0, t1] ×

[0, t2]}. Intuitively, this is because of the inclusion-exclusion formula of J. Poincar´e. I will describe this
in the simpler discrete setting. A formal verification is more difficult and requires more work, but few new
ideas are needed; cf. MPP (Chapter 7,§4) for details.

In the discrete setting, we wish to construct white noise onZ2 (instead ofR2 ). That is, we want

• for all A ⊆ Z2, W (A) is Gaussian with variance#A;

• if A1, A2 ⊆ Z2 are disjoint,W (A1) andW (A2) are independent.

It is easy to construct such a white noise: simply let{ηi}i∈Z2 be i.i.d. standard Gaussians, anddefine

W (A) =
∑
i∈A

ηi, ∀A ⊂ Z2.

(Check!) Discrete Brownian sheet is thent 7→ ∑
i4 t ηi for all t ∈ Z2, and it follows (really from Poincar´e’s

inclusion–exclusion formula) that ifF(t) is the sigma-field generated by{B(s); s4 t, s ∈ Z2}, thenF(t)
is also the sigma-field generated by

{
W (A); A ⊆ (

[0, t1]× [0, t2]
) ∩Z2

}
.

In continuous-time, one needs to be more careful, but this is the basic idea, nonetheless. �

The above says alot about the evolution of the processt 7→ B(t), and we will come back to it later.
However, there are other evolutionary properties, as well. Here is one example.

Lemma 1.2 (444–Markov property) Fix s ∈ R2
+ with s1, s2 > 0. Then,t 7→ B(t + s) − B(s) is indepen-

dent ofF(s). In particular, conditional onB(s), t 7→ B(s + t) is independent ofF(s).

In fact, we will soon see what the conditional distribution of the above process is.

Proof Clearly, wheneveru4 s are both inR2
+ ,

E
{
[B(s + t)−B(s)]×B(u)

}
= min(s1 + t1, u1)×min(s2 + t2, u2)−min(s1, u1)×min(s2, u2)
= u1u2 − u1u2

= 0.

But for Gaussians, uncorrelatedness = independence. This shows thatt 7→ B(t + s)−B(s) is independent
of F(s). The second assertion follows from the first. �
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But, B(s + t)−B(s) is Gaussian with variance

σ2(s, t) = E
{∣∣W ([0, t + s] \ [0, s])

∣∣2} = (t1 + s1)(t2 + s2)− s1s2,

where[0,u] = [0, u1]× [0, u2] for all u ∈ R2 . Thus, we can find the “law” of the “future” givenB(s):

E
{
f(B(s + t))

∣∣F(s)} =
1√

2πσ2(s, t)

∫ +∞

−∞
f(z + B(s)) exp

(
− z2

2σ2(s, t)

)
dz. (1.1)

2 Local Theory: Dynamics

We now wish to study the properties of the process near a given time points. For simplicity, let1 = (1, 1),
0 = (0, 0), and consider the processt 7→ B(t + 1)−B(1). In white noise terms, this is

B(t + 1)−B(1) = W
(
[0, t + 1] \ [0,1]

)
= W

(
[1, t1 + 1]× [0, 1]

)
+ W

(
[0, 1] × [1, t2 + 1]

)
+ W

(
[1, t + 1]

)
:= β1(t1) + β2(t2) + B′(t).

The important thing to remember is that since whenever|A1∩A2| = 0,W (A1 ) andW (A2) are independent.
This means that the processesβ1, β2 andB′ are all totally independent from one another, as well asF(1);
the last statement comes from Lemma 1.2. On the other hand, for allt, s ∈ R2

+ ,

E{β1(t1) · β1(s1)} = E
{
W

(
[1, t1 + 1]× [0, 1]

) · W (
[1, s1 + 1]× [0, 1]

)}
=

∣∣∣([1, t1 + 1]× [0, 1]
) ∩ (

[1, s1 + 1]× [0, 1]
)∣∣∣

= min(t1, s1).

Thus,β1 is a Brownian motion. By symmetry,β2 is also a Brownian motion. Finally,

E
{
B′(s) · W ′(t)

}
=

∣∣∣[1, t + 1] ∩ [1, s + 1]
∣∣∣

= min(s1, t1)×min(s1, t2).

That is,W ′ is a Brownian sheet. We have proven the following:

Theorem 2.1 (W. Kendall) The processt 7→ B(t + 1) has the decomposition

B(t + 1) = B(1) + β1(t1) + β2(t2) + B′(t),

whereβ1 andβ2 are Brownian motions,B′ is a Brownian sheet, and(β1, β2, B
′) are entirely independent

from one another, as well as fromB(1).
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The above has been expanded upon very nicely in a series of articles by R. C. Dalang and J. B. Walsh;
cf.. the Bibliography.

This decomposition is quite useful in analysing the sample paths of the sheet. For instance, suppose we
are interested in the behavior ofB(t + 1) whent ≈ 0. Note that the variance ofβ1(t1) (β2(t2), resp.) ist1
(t2, resp.), while that ofB′(t) is t1t2. Sincet ≈ 0, it stands to reason thatB′(t) should be a.s. dominated
by β1(t1) + β2(t2), ast → 0. This can be made rigorous in various settings, and the end result, usually, is
that, at least locally, one might expect

B(t + 1) ≈ B(1) + β1(t1) + β2(t2).

The 2-parameter processt 7→ β1(t1) + β2(t2) is muchsimpler to analyse, and is calledadditive Brownian
motion. Of course, this discussion is heuristic, but the ideas introduced here can be useful in studying the
local structure of the sheet, amongst other things.

SOMETHING TO TRY: Find a decomposition near a general points with s1, s2 > 0 analogously. A much
harder, though still possible, exercise is to completely characterize the processt 7→ B(t) givenB(s) for a
fixeds ∈ R2 with s1, s1 > 0.

(HINT: B(s + t) − B(s) should look likes2β1(t1) + s1β2(t2), plus a Brownian sheet. For the rest of the
decomposition, it suffice to consider the process(t1, t2) 7→ B(s1 − t1, s2 + t2) wheret1 ∈ (0, s1) and
t2 ≥ 0. For this case, try findingγ = γs,t such thatt 7→ B(s1 − t1, s2 + t2) + γB(s) is independent of
B(s). There is a unique choice of such aγ. Show that with this choice ofγ, t 7→ B(s1−t1, s2+t2)+γB(s)
is, in fact, independent of the sigma-algebra generated by{B(r); r1 ≥ s1, 0 ≤ r2 ≤ s2}.)

Motivated by this heuristic discussion, we note that ifs ∈ R2 is fixed and ifs1, s2 > 0, there exists a
finite constantc = c(s) > 1, such that for allt ∈ [s, s + 1],

1
c
|t| ≤ σ2(s, t) ≤ c|t|. (2.1)

This is motivated by the heuristics above, since at least fort small,B(t + s) − B(s) is supposed to look
like s2β1(t1) + s1β2(t2) whose variance is exactlys2t1 + s1t2. The latter is betweenmin(s1, s2)|t1 + t2|
andmax(s1, s2)|t1 + t2|. Since all norms onR2 are equivalent, the displayed inequalities should follow.

SOMETHING TO TRY: Prove Eq. (2.1), either directly, or by appealing to a decomposition nears à la
Theorem 2.1.

As a consequence of Eq. (2.1), used in conjunction with Eq. (1.1), we obtain the following analytical
counterpart to our heuristic discussion about the sample paths ofB near a points:
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Lemma 2.2 For each fixeds ∈ R2
+ with s1, s2 > 0, there exists a constantC = C(s) > 1, such that for all

positive, measurablef : R → R, and allt ∈ R2
+ ,

C−1

∫
R

f(z + B(s))
e
−Cz2

|t|√|t| dz ≤ E
{
f(B(s + t))

∣∣F(s)} ≤ C

∫
R

f(z + B(s))
e
− z2

C|t|√|t| dz.

It is time to stop and see what we would have done hadB been ordinary Brownian motion. In this case,

E{f(B(t + s)) |F(s)} =
1√
2πt

∫ ∞

−∞
f(z + B(s))e−

z2

2t dz

= pt ? f(B(s))
:= Stf(B(s)),

where? denotes convolution , and

pt(x) =
e−

x2

2t√
2πt

, ∀t > 0, x ∈ R.

By the Chapman-Kolmogorov equations,St+sf(x) = St(Ssf)(x). In the language of operator theory,
St+s = StSs, which means that{St}t≥0 is a convolution semigroup of linear operators. This is known as
theheat semigroupand is intimately connected to parabolic PDE’s based on the Laplacian∆. Lemma 2.2 is
a quantitative analogue of such operator-theoretic connections when there are two parameters involved. In
disguise, it states that Brownian sheet is related to the two-parameter convolution semigroupt 7→ St1St2 ,
but only in the sense of inequalities that hold “locally”; this is useful sinceSt is a positive operator in that
“f ≥ 0, a.e.”⇒ “Stf ≥ 0, a.e.” By “local”, I mean thats is fixed, and we are looking locally around time
s. Finally, let me mention that such inequalities are the best that one can hope for, since it can be shown that
exact connections to two-parameter semigroups do not hold in a useful and meaningful manner.

Another application of Eq. (2.1) is to the continuity oft 7→ B(t). Note that

E{|B(t + s)−B(s)|2} = σ2(s, t)
≤ c|t|.

But the following property of Gaussian random variables is easy to verify by direct calaculation: ifg is a
Gaussian variate, for anyp > 2, there existsκ(p) such that‖g‖p = κ(p)‖g‖p/2

2 . Consequently,

E{|B(t + s)−B(s)|p} ≤ cκ(p)|t| p2 , ∀t ∈ R2 . (2.2)

11



Now, we recall the followingN -parameter formulation of Kolmogorov’s continuity lemma that is proved as
in the more familiar 1-parameter case.

Lemma 2.3 (A. N. Kolmogorov) Letx = {xt; t ∈ RN } be a random process indexed byRN , and suppose
that for all compactK ⊂ RN , there existsc, % > 0 andη > N such that for alls, t ∈ K,

E{|xt+s − xs|%} ≤ c|t|η .

Then,x has a modification that is continuous.

The values of% andc are immaterial to the content of this result. However,η must bestrictly greater
thanN (the number of parameters) for this result to be applicable. Better results are possible via the notions
of metric entropy, and majorizing measures, but the above is good enough for our purposes. Combined with
our calculation for the Brownian sheet, Eq. (2.2), we obtain

Lemma 2.4 Thre exists a modification ofB that is continuous. In particular, one can construct the law
P ◦B−1 on the spaceC

(
[0,∞)N

)
of continuous functions, endowed with the compact-open topology.

The second line merely states that we do not have to construct the law ofB on the ill-behaved spaceRR
N
+

with product topology. But, rather, onC
(
[0,∞)N

)
, which is quite a nice measure space. As a notational

aside, recall thatP ◦B−1{•} is the measureP{B ∈ •}.
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Lecture 3

Cairoli’s Theory of Martingales

Recall thats4 t means thats1 ≤ t1 ands2 ≤ t2, and thatsf t = (s1 ∧ t1, s2 ∧ t2) ∈ R2 . Recall also that
F = {F(t); t ∈ R2

+} is a two-parameter filtration if(i) for eacht ∈ R2
+ , F(t) is a sigma-algebra; and(ii)

whenevers4 t are both inR2
+ , F(s) ⊆ F(t).

A 2-parameter process{M(t); t ∈ R2
+} is amartingalewith respect to the filtrationF if

(i) for eacht ∈ R2
+ , M(t) is F(t)-measurable;

(ii) for eacht ∈ R2
+ , M(t) ∈ L1(P); and

(iii) whenevers4 t are both inR2
+ , E{M(t) |F(s)} = M(s), a.s.

In general, there is no useful theory of 2-parameter martingales, as there exist bounded 2-parameter
martingales that do not converge; cf. Dubins and Pitman in the Bibliography, or Chapter 1 of MPP. However,
Cairoli, and subsequently, Cairoli and Walsh have shown us that, under commutation, things work out rather
nicely for 2-parameter (and, in general, multiparameter) martingales. In light of Theorem 1.1, we can apply
such a martingale theory to the filtration of the Brownian sheet, which is our long-term goal. In this lecture,
we mostly concentrate on aspects of the Cairoli-Walsh theory that we will need. In order to avoid the
technical issues that come with continuous-time processes, we only consider martingales in discrete time.
This will be ample for our needs. As such, throughout this lecture, our parameter set is some countable
subset ofR2 that inherits the partial order4 as well. Without loss of much generality, we assume this to be
N2 , whereN = {1, 2 . . .} are the numerals.

1 Commutation and Conditional Independence

Recall thatF is commuting if for alls, t ∈ N2 ,F(s) andF(t) are conditionally independent, givenF(sf t).
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Theorem 1.1 If F is commuting, andV is a bounded random variable, for anys ∈ N2 ,

E{V |F(s)} = E
{
E [V |F1(s1)]

∣∣∣F2(s2)
}

, a.s.,

whereF1(i) = ∨j≥1F(i, j) andF2(j) = ∨i≥1F(i, j), ∀i, j ≥ 1.

Henceforth, we callF1 = {F1(i); i ≥ 1} andF2 = {F2(j); j ≥ 1} the marginal filtrationsof the
2-parameter filtrationF. Note that the marginal filtrations of a 2-parameter filtration are two 1-parameter
filtrations in the usual sense.

Before proving Theorem 1.1, we establish a technical lemma.

Lemma 1.2 A 2-parameter filtrationF is commuting if and only if for alls, t ∈ N2 , and for all bounded
F(s)-measurable variatesYs,

E{Ys |F(t)} = E{Ys |F(tf s)}, a.s.

Proof First, we supposeF is commuting. That is,

E{Ys × Yt |F(sf t)} = E{Ys |F(sf t)} × E{Yt |F(sf t)}, a.s.

Take expectations to see that

E{Ys × Yt} = E
[
E{Ys |F(sf t)} × E{Yt |F(sf t)}

]
= E

[
Yt × E{Ys |F(sf t)}

]
.

Since this is true for all boundedF(t)-measurableYt, we have shown that commutation implies that for all
boundedF(s)-measurable variatesYs, E{Ys |F(t)} = E{Ys |F((sf t)}, almost surely. This is half the
lemma. The converse half follows from the inclusionF(sf t) ⊆ F(s). �

Proof of Theorem 1.1In light of Lemma 1.2, Theorem 1.1 follows readily. Indeed, for alli, j, n,m ≥ 1,

E
[ Yi+n,j︷ ︸︸ ︷
E{V |F(i + n, j)}

∣∣∣F(i, j + m)
]

= E
{
Yi+n,j

∣∣F(i, j)
}

by Lemma 1.2,

= E{V |F(i, j)} sinceF(i, j) ⊆ F(i + n, j).
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Now, letm ↑ ∞ and use Doob’s martingale convergence theorem to see that

E
[
E
{
V

∣∣F(i + n, j)
} ∣∣∣F1(i)

}
= E{V |F(i, j)}, a.s.

To finish, letn ↑ ∞ and appeal to Doob’s theorem once more. �

As a consequence of Theorem 1.1, we obtain the important maximal of R. Cairoli.

Theorem 1.3 (Cairoli’s Maximal inequality) Let F be a commuting filtration and consider a two-
parameter martingaleM = {Mi,j ; i, j ≥ 1}.
(i) If p > 1, for all n,m ≥ 1,

E
{

max
(i,j)4(n,m)

|Mi,j |p
} ≤ ( p

p− 1
)2p

E{|Mn,m |p}.

(ii) For p = 1, we have

E
{

max
(i,j)4(n,m)

|Mi,j |
} ≤ ( e

e− 1
)2

[
1 + E{|Mn,m | ln+ |Mn,m|}

]
.

I will only prove (i), which is the part we need for these lectures.† Whenp = 1, things are only a little
trickier; cf. MPP Chapter 1 for details.

Proof of (i) Note that for all(i, j)4(n,m), Mi,j = E{Mn,m |F(i, j)}, almost surely. Owing to Theorem
1.1,

Mi,j = E
[
E
{
Mn,m

∣∣F1(i)
} ∣∣∣F2(j)

}
, ∀(i, j)4(n,m), a.s.

Consequently, by the conditional form of Jensen’s inequality,

max
(i,j)4(n,m)

|Mi,j |p ≤ max
j≤m

E
[

max
i≤n

∣∣ Υi︷ ︸︸ ︷
E
{
Mn,m

∣∣F1(i)
} ∣∣p ∣∣∣F2(j)

}
, a.s.

By Doob’s maximal inequality for 1-parameter martingales, ifp > 1,

E{ max
(i,j) 4(n,m)

|Mi,j |p} ≤
( p

p− 1
)p max

i≤n
E{|Υi |p}

=
( p

p− 1
)p
E
[

max
i≤n

∣∣E{
Mn,m

∣∣F1(i)
}∣∣p].

†In fact, we will only need thep = 2 case.
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Apply Doob’s inequality again to finish. �

SOMETHING TO TRY: LetXi,j be i.i.d. random variables with mean0, and considerSn,m =
∑∑

(i,j)4(n,m)

Xi,j .

Show thatS = {Sn,m; n,m ≥ 1} is a 2-parameter martingale with respect to a commuting filtration.

There is also a theory of2-parameter reversed martingales that can be used to prove the following in-
triguing law of large numbers.

Theorem 1.4 (R. Smythe)Let Xi,j be i.i.d. random variables with meanµ, and consider the two-
parameter random walkSn,m =

∑∑
(i,j)4(n,m)

Xi,j . Then,

X1,1 ∈ L log L(P) =⇒ P
{

lim
n,m→∞

Sn,m

nm
= µ

}
= 1, whereas

X1,1 6∈ L log L(P) =⇒ P
{

lim sup
n,m→∞

|Sn,m|
nm

= +∞
}

= 1.

SOMETHING TO TRY: Check, using the Borel–Cantelli lemma, that

X1,1 6∈ L log L(P) ⇐⇒ P
{

lim sup
n,m→∞

|Xn,m|
nm

= +∞
}

= 1.

Show that this implies the second half of Smythe’s theorem.

I will append Chapter 2 of MPP to illustrate two examples of martingale theory in classical analysis: one
to differentiation theory (the differentiation theorem of Lebesgue, as well as that of Jessen, Marcinkiewicz
and Zygmund), and another to the the Haar function expansion of the elements ofL1([0, 1]N ).
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Lecture 4

Capacity, Energy and Dimension

We now come to the second part of these lectures which has to do with “exceptional sets”. The most obvious
class of exceptional sets are those of measure0, where the measure is some nice one. As an example,
consider a compact setE ⊂ Rd . One way to construct its Lebesgue measure is as follows: coverE by small
boxes, compute the volume of the cover, and then optimize over all the covers. That is,

|E| = lim
ε→0+

inf
{∑

i

[diam(Ei)]d : E1, E2, . . . closed boxes of diameter≤ ε with ∪i Ei ⊇ E
}

.

Here, we are computing the diameter of the box as twice its`1-radius; i.e., it is the length of any side. This
is equivalent to the usual definition of Lebesgue’s measure, although it is long out of fashion in standard
analysis courses.

1 Hausdorff Dimension and Measures

The first class of exceptional sets that we can discuss are those of Lebesgue’s measure0, of course. But,
this is too crude for differentiating amongst very thin sets. For example, consider the rationalsQ , as well as
Cantor’s tertiary setC. While they are both measure0 sets,C is uncountable, whereasQ is not. We would
like a concrete way of saying thatC is larger thanQ , and perhaps measure how much larger, as well. There
are many ways of doing this, and we will choose a route that is useful for our probabilistic needs. First,
note that for anyα ≥ 0, we can define the analogue of|E| as above. Namely, define for any compact set
E ⊂ Rd ,

Hα(E) = lim
ε→0+

inf
{ ∑

i

[diam(Ei)]α : E1, E2, . . . closed boxes of diameter≤ ε with ∪i Ei ⊇ E
}

.

This makes sense even ifα ≤ 0.
The set functionHα is called theα-dimensionalHausdorff measure. This terminology is motivated by

the following, which is proved by using the method given to us by Carath´eodory:
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Theorem 1.1 The set functionHα is an outer measure on Borel subsets ofRd . For all α > d,Hα(E) = 0
identically. On the other hand, whenα ≤ d is an integer,Hα(E) equals theα-dimensional Lebesgue’s
measure of Borel setE.

Remark For the above to hold, we have used`∞ balls (i.e., boxes). If you usè2-balls in the definition
instead, you will see that for integralα,Hα equalsωα timesα-dimensional Lebesgue’s measure, whereωα

is the volume of anα-dimensional ball of radius1. �

Hausdorff dimensions provide us with a more refined sense of how big a set is. Note that for any compact
(or even Borel, say) setE, there isalwaysa critical α such that for allβ < α, Hβ(E) = 0, while for all
β > α,Hβ(E) = +∞. This is an easy calculation. But it leads to the following important measure-theoretic
notion of dimension:

dim(E) = inf{α : Hα(E) = 0} = sup{α : Hα(E) = +∞}.
This is theHausdorff dimensionof E. If E ⊂ Rd is not compact, definedim(E) as supn≥1 dim(E ∩
[−n, n]d).

How does one compute the Hausdorff dimension of a set? You typically proceed by establishing an
upper bound, as well as a lower bound. The first step is not hard: just find a “good” coveringEi of diameter
less thanε, and compute

∑
i[diam(Ei)]α. Here is one way to get an upper bound systematically; other ways

abound.
Suppose we are interested in computing the Hausdorff dimension of a given compact setE ⊂ [0, 1]d.

Fix a real numbern ≥ 1, and defineEj = [ j
n , j+1

n [, for integers0 ≤ j ≤ n. Then, it is clear that the
diameter of eachEj is no more than2n , while∪jEj ⊃ E. So,

Hα(E) ≤ ( 2
n

)αNn(E),

whereNn(E) =
∑

0≤j≤n 1{Ij,n ∩ E 6= ?} is the number of times the intervalsIj,n contains portions of
E. Therefore, if we can findα such thatlim supn n−αNn(E) < +∞, we havedim(E) ≤ α.† Incidentally,
the minimalα such thatlim supn n−αNn(E) < +∞ is the so-calledupper Minkowski (or box) dimension
of E. If we write the latter asdim

M
(E), we have shown that

dim(E) ≤ dim
M

(E). (1.1)

If we replaceEj by ad-dimensional box of the form[ i1n , i1+1
n [× · · · × [ idn , id+1

n [ and repeat the procedure,
we obtain the upper Minkowski dimension ind dimensions, and Eq. (1.1) remains to hold.

†We do not requiren to be an integer here.
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We now use this to obtain an upper bound for the tertiary Cantor setC. First, let us recall the following
iterative construction ofC: let C0 = [0, 1]. Now, remove the middle third to obtainC1 = [0, 1

3 ] ∪ [23 , 1].
Next, remove the middle thirds of each of the two subintervals to getC2 = [0, 1

9 ]∪ [29 , 3
9 ]∪ [69 , 7

9 ]∪ [89 , 1], and
so on. In this way, you have a decreasing sequence of compact subsets of[0, 1], and, as such,C = ∩nCn is a
nontrivial compact subset of[0, 1]. At thenth level of construction,Cn is comprised of2n intervals of length
3−n. Therefore,|Cn| = (2

3 )n → |C| = 0. On the other hand, we just argued that there are2n boxes, of
diameter no greater than (in fact, equal to)3n that coverC. Therefore, we have shown thatN3n(C) = 2n.
In particular, for anyα > log3(2), lim supm→∞(3−m)−αN3m(E) = limm→∞ 3−mα2m = 0. So that,
after a little work, we getdim

M
(E) ≤ log3(2). In fact, it is easy to see, by the same reasoning, that

dimM (E) = log3(2). In any event, we obtain the following:

dim(C) ≤ log3(2) =
ln 2
ln 3

. (1.2)

We will show that this is sharp in that the above inequality is an equality. But first, a question:why not
stick to Minkowski dimension?It is certainly easier to compute than Hausdorff dimension, and at first sight,
more natural. To answer this, try computingdim

M
(Q), or dim

M
of any other dense subset of[0, 1]d for that

matter! You will see that the answer is1! On the other hand, it is not hard to show thatdim(E) = 0 if E is
countable, for then we can writeE = {ri} and note that{ri} is a cover ofE with diameter less thanε. This
seemingly technical difference is really a big one.

Now, to the lower bound fordim(C). Obtaining lower bound on Hausdorff dimension is, in principle,
very hard, since you have to work uniformly over all covers. What makes things difficult is that there are
alot of potential covers!

The ingenious idea behind obtaining lower bounds is due to O. Frostman who found it in his Ph.D. thesis
in the 1935! Namely,

Theorem 1.2 (Frostman’s lemma)Suppose we knew that the compact setE carries a probability measure
µ that is Hölder-smooth in the following sense: there existsα > 0 and a constantC such that for all
r ∈ (0, 1),

µ(B(y, r)) ≤ Crα,

for µ-almost ally, whereB(y, r) is the`∞-ball of radiusr abouty ∈ Rd . Then,dim(E) ≥ α.

There is a converse to this that we will only need once, and will not prove, as a result; for a proof, see
Appendix C of MPP.
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Theorem 1.3 (Frostman’s Lemma (continued))Supposedim(E) ≥ α > 0. Then, for eachβ < α, there
existsµ ∈ P(E) such that

sup
x∈Rd

sup
r∈(0,1)

µ{B(x, r)}
rβ

< +∞.

Proof I will prove this when instead ofµ-almost allx, the lemma holds for allx. The necessary modifica-
tions to prove the general case are technical but not hard.

Fix ε ∈ (0, 1), and consider any coverE1, E2, . . . of diameter≤ ε. Note that

1 = µ(E) ≤
∑

i

µ(Ei) ≤ C
∑

i

[
diam(Ej)

]α
.

Optimize over all such covers, and letε → 0, to see that1 ≤ 2CHα(E). The theorem follows, since this
shows that for anyβ < α,Hβ(E) = +∞. (To prove in the general case, note that ifµ(Ej) is not less than
C[diam(Ej)]α, we can coverEj by at most2d compact intervalsFj,1, . . . , Fj,2d of diameter less than twice
that ofEj , such thatµ(Fj,k) ≤ C[diam(Fj,k)]α ≤ 2αC[diam(Ej)]α. Thus,µ(Ej) ≤ 2α+dC[diam(Ej)]α,
which is good enough.) �

We use this to complete our proof of the following.

Proposition 1.4 If C denotes the tertiary Cantor set,dim(C) = ln 2
ln 3 .

Proof In light of what we have already done, we only need to verify the lower bound on dimension. We
do this by finding a sufficiently smooth measure onC. Our choice is more or less obvious and is found
iteratively as follows: construct the smoothest possible probability measureµn on Cn and “take limits”.
Now, the smoothest and flattest probability measure onCn is the uniform measure,µn. It is easy to see that
for all x ∈ [0, 1],

µn

(
[x− 3−n, x + 3−n]

) ≤ 2−n = (3−n)ln 2/ ln 3. (1.3)

This is suggestive, but we need to work a little bit more. To do so, we next note that theµn’s are nested:
We write Cn = ∪2n

i=1Ii,n whereIi,n is an interval of length3−n. The nested property of theµn’s is the
following, which can be checked by induction:

∀n ≥ m,∀j = 1, . . . , 2m : µn(Ij,m) = µm(Ij,m) = 2−m.
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Standard weak convergence theory guarantees us of the existence of a probability measureµ∞ on the com-
pact setC such that for allm ≥ 1 and allj = 1, . . . , 2m,

µ∞(Ij,m) = µm(Ij,m) = 2−m.

Moreover, Eq. (1.3) extends toµ∞. Namely, for allx ∈ [0, 1] and alln ≥ 0,

µ∞([x− 3−n, x + 3−n]) ≤ (3−n)ln 2/ ln 3.

Now, if r ∈ (0, 1), we can findn ≥ 0 such that3−n−1 ≤ r ≤ 3−n. Therefore,

sup
x

µ∞([x− r, x + r]) ≤ sup
x

µ∞([x− 3−n, x + 3−n]) ≤ (3−n)ln 2/ ln 3 ≤ (3r)ln 2/ ln 3.

So, we have found a probability measureµ∞ on C, that satisfies the condition of Frostman’s lemma with
C = 3ln 2/ ln 3 = 2 andα = ln 3/ ln 3. This completes our proof. �

2 Energy and Capacity

Supposeµ is a probability measure on some given compact setE ⊂ Rd . We will write this asµ ∈ P(E),
and define for any measurable functionf : E × E → R+ ∪ {∞},

Ef (µ) =
∫∫

f(x, y)µ(dx)µ(dx).

This is theenergyof µ with respect to the gauge functionf ; it is always defined although it may be infinite.
The following energy forms are of use to us:

Energyα(µ) =
∫∫

|x− y|−α µ(dx)µ(dy),

where|x| = max1≤j≤d |xj| for concreteness, although any other Euclidean norm will do just as well. This
is the so-calledα-dimensionalBessel–Riesz energyof µ. The question, in the flavor of the previous section,
is when does a setE carry a probability measure of finite energy?To facilitate the discussion, we define the
capacityof a setE by

Cf (E) =
[

inf
µ∈P(E)

Ef (µ)
]−1

, and in particular,

Capα(E) =
[

inf
µ∈P(E)

Energyα(µ)
]−1

.

The above is Gauss’ principle of minimum energy. Next, we argue that there is a minimum energy measure
called the equilibrium measure. Moreover, its potential is essentially constant, and the constant is the energy.
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Theorem 2.1 (Equilibrium Measure) SupposeE is a compact set inRd such that for someα > 0,
Capα(E) > 0. Then, there existsµ ∈ P(E), such that

Energyα(µ) =
[
Capα(E)

]−1
.

Moreover, forµ-almost allx, ∫
|x− y|−α µ(dy) = Energyα(µ).

Proof By definition, there exists a sequence of probability measuresµn, all supported onE, such that (i)
they have finite energy; and (ii) for alln ≥ 1, (1 + 1

n)[Capα(E)]−1 ≥ Energyα(µn) ≥ [Capα(E)]−1. Let
µ be any subsequential limit of theµn’s. Sinceµ ∈ P(E) as well,Energyα(µ) ≥ [Capα(E)]−1. We aim to
show the converse holds too. By going to a subsequencen′ along whichµn′ converges weakly toµ, we see
that for anyr0 > 0,∫∫

|x−y|≥r0

|x− y|−α µ(dx)µ(dy) = lim
n′→∞

∫∫
|x−y|≥r0

|x− y|−α µn′(dx)µn′(dy) ≤ [Capα(E)]−1.

Let r0 ↓ 0 and use the dominated convergence theorem to deduce the first assertion. For the second asser-
tion, i.e., that the minimum energy principle is actually achieved for some probability measure.

Now, consider

Υη =
{

x ∈ E :
∫
|x− y|−α µ(dy) < (1− η)Energyα(µ)

}
, η ∈ (0, 1).

We wish to show thatµ(Υη) = 0 for all η ∈ (0, 1). If this is not the case for someη ∈ (0, 1), then, consider
the following

ζ(•) =
µ(• ∩Υη)

µ(Υη)
.

Evidently,ζ ∈ P(E), and has finite energy. Define

λε = (1− ε)µ + εζ, ε ∈ (0, 1).

Then,λε is also a probability measure onE, and it, too, has finite energy. In fact, writingλε = µ−ε(µ−ζ),
a little calculation shows that

Energyα(λε) = Energyα(µ) + ε2Energyα(µ− ζ)− 2ε
∫∫

|x− y|−α µ(dx)
[
µ(dy)− ζ(dy)

]
.

(The energy ofµ− ζ is defined as ifµ− ζ were a positive measure.)
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Sinceµ minimizes energy, the above is greater than or equal toEnergyα(µ). Thus,

ε2Energyα(µ− ζ) ≥ 2ε
∫∫

|x− y|−α µ(dx)
[
µ(dy)− ζ(dy)

]
.

Divide by ε and letε → 0 to see that

Energyα(µ) ≤
∫∫

|x− y|−α µ(dx) ζ(dy).

But by the definition ofΥη, the right hand side is no more than(1 − η)Energyα(µ), which contradicts the
assumption thatµ(Υη) > 0. In other words,∫

|x− y|−α µ(dy) ≥ Energyα(µ), µ-a.s.

It suffices to show the converse inequality. But this is easy. Indeed, suppose

Gµ(x) =
∫
|x− y|−α µ(dy) ≥ (1 + η)Energyα(µ),

on a set of positiveµ-measure. The functionx 7→ Gµ(x) is theα-dimensional potentialof the measureµ.
We could integrate [dµ] to get the desired contradiction, viz.,

Energyα(µ) =
∫

Θη

Gµ(x)µ(dx) +
∫

Θ{
η

Gµ(x)µ(dx)

≥ (1 + η)Energyα(µ) · µ(Θη) +
∫

Θ{
η

Gµ(x)µ(dx),

whereΘη = {x : Gµ(x) ≥ (1 + η)Energyα(µ)}. Therefore, by Theorem 2.1 on equilibrium measure,

Energyα(µ) ≥ Energyα(µ)
[
(1 + η)µ(Θη) + µ(Θ{

η)
]

= Energyα(µ)
[
1 + ηµ(Θ{

η)
]
,

which is a contradiction, unlessµ(Θη) = 0. This concludes our proof. �

SOMETHING TO TRY: The α-dimensional Bessel–Riesz energy defines a Hilbertian pre-norm. Indeed,
defineMα(E) to be the collection of all measures of finiteα-dimensional Bessel–Riesz energy onE. On
this, define the inner product,

〈µ, ν〉 =
∫∫

|x− y|−α µ(dx) ν(dy).

Check that this defines a positive-definite bilinear form onMα(E) if α ∈ (0, d). From this, conclude that
for all µ, ν ∈Mα(E), 〈µ, ν〉2 ≤ Energyα(µ) · Energyα(ν). This fills a gap in the above proof.
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Thecapacitary dimensionof a compact setE ⊂ Rd is defined as

dimc(E) = sup
{
α : Capα(E) > 0

}
= inf

{
α : Capα(E) = 0

}
.

Theorem 2.2 (Frostman’s Theorem)Capacitary and Hausdorff dimensions are one and the same.

Proof Here is one half of the proof: we will show that if there existsα > 0 and a probability measureµ on
E, such thatEnergyα(µ) < +∞ ⇒ dim(E) ≥ α. This shows thatdimc(E) ≤ dim(E), which is half the
theorem.

By Theorem 2.1, we can assume without loss of generality thatµ is an equilibrium measure. In particu-
lar,

µ(B(x, r)) ≤ rα

∫
|x− y|−α µ(dy) = rαEnergyα(µ),

µ-almost everywhere. Frostman’s lemma (Theorem 1.2) shows thatdim(E) ≥ α, as needed.
For the other half, we envoke the second half of Frostman’s theorem (Theorem 1.3) to produce for each

β < dim(E) a probability measureµ ∈ P(E), such that

µ(B(x, r)) ≤ Crβ, ∀x ∈ Rd , r ∈ (0, 1).

But if D denotes the diameter ofE,

Energyγ(µ) =
∞∑

j=0

∫∫
2−j−1D≤|x−y|≤2−jD

|x− y|−γ µ(dx)µ(dy)

≤
∞∑

j=0

2(j+1)γD−γ sup
x∈Rd

µ(B(x, 2−jD)

≤ C2γDβ−γ
∞∑

j=0

2jγ2−jβ,

which sums ifγ < β. Thus, we have shown that for allγ < dim(E), Capγ(E) > 0, i.e.,dimc(E) ≥ γ for
all γ < dim(E), which completes the proof. �

3 The Brownian Curve

Next, we roll up our sleeves and compute the Hausdorff dimension of a few assorted and interesting random
fractals that arise from Brownian considerations. Our goal is to illustrate the methods and ideas rather than
the final word on this subject.

Throughout,B = {Bt; t ≥ 0} denotes Brownian motion inRd . Recall also thatB is a strong Markov
process, and that
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B hits points iffd = 1, i.e., ∃t > 0 : Bt = 0 ⇐⇒ d = 1.

In particular, note that whend = 1, the Brownian curve has full Lebesgue measure, and also full dimen-
sion. On the other hand, whend ≥ 2, the Brownian curve has zero Lebesgue measure (L´evy’s theorem),
despite the following result.

Theorem 3.1 If B denotesd-dimensional Brownian motion, whered ≥ 2, dim B(R+) = 2, a.s.

Proof We do this in two parts. First, we show thatdim B(R+) ≤ 2 (the upper bound), and then we show
thatdim B(R+) ≥ 2 (the lower bound). In any event, recall thatd ≥ 2.

Proof of the upper boundRecall that for any intervalI ⊂ Rd ,

P{B[1, 2] ∩ I 6= ?} ≤ cκ(|I|), whereκ(ε) =

{
εd−2, if d ≥ 3
ln+

(
1
ε

)
, if d = 2

. (3.1)

We will obtain this sort of estimate, in the more interesting case of Brownian sheet, in the last lecture. In
fact, one can show that the constantc depends only onM , as long asI ⊆ [−M,M ]d. ConsiderI1, . . . , Ind

cubes of side1n , such that (i)I◦i ∩ I◦j = ? if i 6= j; and (ii)∪nd

j=1Ij = [0, 1]d. Based on these, define

Ej =

{
Ij , if Ij ∩B[1, 2] 6= ?

?, otherwise
.

Note thatE1, . . . , End is a( 1
n)-cover ofB[1, 2] ∩ [0, 1]d. Thus,

Hα

(
B[1, 2] ∩ [0, 1]d

) ≤ lim inf
n→∞

nd∑
j=1

n−α1{Ij∩B[1,2] 6=?}.

Consequently, as long asα > 2,

E
{Hα

(
B[1, 2] ∩ [0, 1]d

)} ≤ c lim inf
n→∞

nd∑
j=1

n−ακ
(

1
n

)
= c lim inf

n→∞ nd−ακ
(

1
n

)
= 0.

In particular,dim(B[1, 2]∩ [0, 1]d) ≤ 2, a.s. Similarly,dim(B[a, b]∩ [−n, n]d) ≤ 2, a.s. for any0 < a < b
andn > 0. Let n ↑ ∞, a ↓ 0 andb ↑ ∞, all along rational sequences to deduce thatdim B(R+) ≤ 2,
a.s. This uses the easily verified fact that wheneverA1 ⊆ A2 ⊆ · · · are compact, and ifHα(Aj) = 0, then
Hα(∪jAj) = 0.
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Proof of the lower boundFor the converse, we will show thatdim B[1, 2] ≥ 2, and do this by appealing to
Frostman’s theorem (Theorem 2.2). To do so, we need to define a probability, or at least a finite, measure on
the Brownian curve. The most natural measure that lives on the curve of{Bs; 1 ≤ s ≤ 2} is the occupation
measure:

O(E) =
∫ 2

1
1{Bs∈E} ds.

With this in mind, note that for anyα > 0,

Energyα(O ) =
∫∫

|x− y|−α O (dx)O (dy) =
∫ 2

1

∫ 2

1
|Bs −Bt|−α ds dt.

By Frostman’s theorem, it suffices to show thatE{Energyα(O )} < +∞ for all 0 < α < 2. But this is easy.
Indeed, note that

E
{
Energyα(O )

}
= 2

∫ 2

1

∫ 2

s
E
{|Bt−s|−α} ds dt = 2

∫ 2

1

∫ 2

s
|t− s|−α

2 ds dt× E{|Z|−α},

whereZ is ad-dimensional vector of i.i.d. standard normals. Sinceα < 2, the double integral is finite. It
suffices to show thatE{|Z|−α 〉 < +∞. But

E{|Z|−α} =
∫ ∞

0
P{|Z|−α > λ} dλ

≤ 1 +
∫ ∞

1
P{|Z|−α > λ} dλ

= 1 + α

∫ 1

0
P{|Z| < u}u−α−1 du (u = λ−

1
α )

= 1 + α

∫ 1

0

[
P{|Z1| ≤ u}]d

u−α−1 du.

But P{|Z1| ≤ u} = (2π)−
1
2

∫ u
−u e−

1
2
λ2

dλ ≤ u. Hence, usingd ≥ 2 > α,

E{|Z|−α} ≤ 1 + α

∫ 1

0
ud−α−1 du =

d

d− α
< +∞,

as promised. �

Here is a slick proof of L´evy’s theorem alluded to earlier.

Theorem 3.2 (P. Ĺevy) If B is Brownian motion inRd and ifd ≥ 2, B(R+) has zero Lebesgue’s measure,
a.s.
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Proof I will prove this whend ≥ 3 where things are alot simpler, and appeal to an argument that, in physics
literature, is calledgroup renormalization. Tacitly held, throughout, is the fact thatE{λd (B(0, t))} < ∞;
this is a ready consequence of the easy estimateE{sup0≤s≤t |Bs|d} < +∞.

If λd denotes Lebesgue’s measure onRd , note that

E{λd (B(0, 2))} ≤ E{λd(B(0, 1))} + E{λd (B(1, 2))}.
We make two observations:(i) E{λd(B(1, 2))} = E{λd (B(0, 1))}; and (ii) by Brownian scaling,

E{λd (B(0, 2))} = E{λd (
√

2B(0, 1))} = 2
d
2 E{λd (B(0, 1))}, thanks to the scaling properties ofλd.

Combining these observations, we get2
d
2 E{λd (B(0, 1))} ≤ 2E{λd (B(0, 1))}, which is impossible un-

lessE{λd (B(0, 1))} = 0, sinced ≥ 3.

�
�

�
�A few words about thed = 2 case: Lévy’s theorem is harder to prove whend = 2, and uses the estimate

(3.1) and a covering argument. �

4 Brownian Motion and Newtonian Capacity

We now look at an elementary connection between three-dimensional Brownian motion and Newtonian
capacity. LetB = {Bt; t ≥ 0} denote three-dimensional Brownian motion, and consider the linear operator

Uf(x) = E
{ ∫ ∞

0
f(Bs + x) ds

}
.

Here,x ∈ R3 andf : R3 → R+ is measurable. We can easily evaluate this as follows. A few liberal doses
of Fubini-Tonelli yield:

Uf(x) =
∫ ∞

0

∫
R3

f(x + z)
e−

‖z‖2
2s

(2πs)
3
2

dz ds

=
1
4π

∫
R3

‖x− y‖−1f(y) dy.

Now, supposef is a probability density function on some (say, nice compact) setE ⊂ R3 . Then,Uf(x) is
the expected amount of time spent inE, weighed according tof , and starting atx ∈ R3 . Now, suppose the
Brownian motion itself starts according to the pdff . Then, this expected time is∫

R3

Uf(x)f(x) dx =
1
4π

∫
R3

∫
R3

‖x− y‖−1f(y) dy f(x) dx.

You should recognize the right hand side as(4π)−1 times the Newtonian energy of the measuref(x) dx.
In summary, if we start Brownian motion inE according tof , the expected amount of time spent inE,
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weighed accroding tof , if precisely 1
4π Energy1(f), wheref(x) is identified with the measuref(x)dx here.

SOMETHING TO TRY: Check that wheneverB is Brownian motion inRd (d ≥ 3) that starts according to
some pdff , ∫

Rd

E
{ ∫ ∞

0
f(Bs + x) ds

}
f(x) dx = cEnergyd−2(f),

and computec. Why does this fail whend = 2 or d = 1?

5 Riesz Transforms andHHHp Spaces

Below, if will prove that ifα ∈ (0, d), the Fourier transform of the functionRd 3 ξ 7→ ‖ξ‖−α is a constant
multiple of‖ξ‖−(d−α). We will compute this constant also. However, let us see what this implies for energy.
Recall that

Energyα(µ) =
∫
Rd

Rµ(x)µ(dx),

whereRµ(x) =
∫
Rd |x− y|−α µ(dy). We are only interested in whether or not the above is finite for some

measureµ. Thus, we cheat at the last moment and replace the`∞ norm by`2 norm to getEnergyα(µ) =∫
Rd Rµ(x)µ(dx), where

Rµ(x) =
∫
Rd

‖x− y‖−α µ(dy)

is the so-calledα-dimensionalRiesz transformof µ. Using obviousL2 notation,Energyα(µ) = (Rµ, µ).
Having noted theL2 connection, we apply Fourier transforms (via Plancherel) to see that

Energyα(µ) = (2π)−d(R̂µ, µ̂).

But,R is a convolution operator that can be identified with the kernelR(a) = ‖a‖−α. Therefore,̂Rµ = R̂µ̂.
On the other hand, we just mentioned that the Fourier transform ofR is c‖ξ‖−(d−α), wherec = Cα from
Lemma 5.1 below. Thus, whenα ∈ (0, d),

Energyα(µ) = (2π)−dc

∫
Rd

‖ξ‖−(d−α)|µ̂(ξ)|2 dξ.

Thus,Energyα(µ) is equivalent (i.e., converges iff the following does) to theHd−α
2

-norm:

‖µ‖2
d−α

2

=
∫
Rd

∣∣µ̂(ξ)
∣∣2{1 + ‖ξ‖2

}−d−α
2 dξ.

Thus we have linked the computations of the lecture of D. BLOUNT earlier this week to energy computa-
tions (in his notation,γ = −1

2(d − α).) If you want to have a more in-depth look at connections to energy
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and dimension, try the following.

SOMETHING TO TRY: Let X = {Xt; t ≥ 0} be an isotropic L´evy process inRd . That is, a process with
i.i.d. increments whose characteristic function is given byE{eiξ·Xt} = exp{− t

2‖ξ‖α}. It is known that
α ∈ (0, 2] is necessary. Whenα = 2, X is just Brownian motion.

Suppose further thatα ∈ (0, d), and define the weighted occupation measure

O (E) =
∫ ∞

0
1E(Xs)e−s ds.

(i) Check that its Fourier transform iŝO (ξ) =
∫∞
0 eiξ·Xse−s ds.

(ii) Use the above to show thatE{|Ô (ξ)|2} =
{

1
2‖ξ‖α + 1

}−1
. In particular, for anyβ ∈ (0, d),

E
{
Energyβ(O )

}
= (2π)−dc

∫
Rd

‖ξ‖−(d−β)
{

1
2‖ξ‖α + 1

}−1
dξ.

(iii) Conclude that wheneverβ < α, Energyβ(O ) < +∞, a.s.

(iv) Use Frostman’s theorem to show that, with probability one,dim(X(R+)) ≥ α. One can show that
this is sharp. That is, whenα ∈ (0, d), dim(X(R+ )) = α, a.s. Whenα = 2, we did this last part
explicitly in Theorem 3.1. Here, the strategy is the same, but we need hitting probability estimates for
stable processes.

Let me conclude with the following promised calculation, then. Henceforth, for anyγ > 0,

Ψγ(ξ) = ‖ξ‖−γ .

Lemma 5.1 For anyγ ∈ (0, d), Ψ̂γ = 1
Cγ

Ψd−γ , whereCγ = 2−
γ
2 π−d

2 Γ(d−γ
2 )/Γ(γ

2 ).

Proof We will relate the mention Fourier transform to the Laplace transform of a Gaussian, first. This may
seem like magic, but if you apply some more Fourier analysis (namely, Bochner’s subordination), you can
explain this more clearly; cf. MPP for the latter.

Note that forθ > 0 andβ > −1,
∫∞
0 e−tθtβ dt = θ−(1+β)Γ(1 + β). In particular,∫ ∞

0
e−t‖ξ‖2tβ dt = ‖ξ‖−(2+2β)Γ(1 + β).
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Now, take a well-tempered functionϕ and consider∫
Rd

ϕ̂(ξ)‖ξ‖−(2+2β) dξ =
1

Γ(1 + β)

∫ ∞

0
tβ

( ∫
Rd

ϕ̂(ξ)e−t‖ξ‖2 dξ
)

dt.

(In truth, theϕ should be a tempered distribution.) Apply Parseval’s identity:(ϕ̂, f̂) = (2π)−d(ϕ, f) to
deduce∫
Rd

ϕ̂(ξ)‖ξ‖−(2+2β) dξ =
(2π)d

Γ(1 + β)

∫ ∞

0
tβ

( ∫
Rd

ϕ(ξ)
e−‖ξ‖2/2t

(2πt)
d
2

dξ
)

dt

=
(2π)d

Γ(1 + β)

∫
Rd

ϕ(ξ)
( ∫ ∞

0

e−‖ξ‖2/2t

(2πt)
d
2

tβ dt
)

dξ (s = ‖ξ‖2
2t )

=
(2π)d

Γ(1 + β)
(2π)−

d
2 2

d
2
−β−1Γ(d

2 − β − 1)
∫
Rd

ϕ(ξ)‖ξ‖d−(2β+2) dξ.

Let 2β + 2 = γ to finish. �
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Lecture 5

Brownian Sheet, Potential Theory, and
Kahane’s Problem

Recall that a Brownian sheetB = {B(s, t); s, t ≥ 0} is just a real process defined as

B(s, t) = W ([0, s] × [0, t]), ∀s, t ≥ 0,

whereW denotes white noise onR2 . We will refer to this asone-dimensional Brownian sheetto stress that
the process takes its values inR.

By ad-dimensional Brownian sheet, we mean thed-dimensional processB = {B(s, t); s, t ≥ 0} such
thatB1, B2, . . . , Bd are i.i.d. (1-dimensional) Brownian sheets. Of course,Bi = {Bi(s, t); s, t ≥ 0}.

1 Polar Sets

The following theorem, due to S. Kakutani, is the cornerstone of probabilistic potential theory.

Theorem 1.1 (S. Kakutani) Let b denoted-dimensional Brownian motion, and consider a fixed compact
E ⊂ Rd . Then,

P{∃t > 0 : bt ∈ E} > 0 ⇐⇒ Capd−2(E) > 0.

The above relatesE to what is called apolar set. Probabilistically, a setE is polar for a process
X = {Xt; t ∈ T} if with positive probability,∃t ∈ T : Xt ∈ E. Thus, Kakutani’s theorem characterizes
polar sets for Brownian motion. This notion of polarity matches with the one from harmonic analysis, which
has to do with the removable singularities of the Dirichlet problem off the set. Amongst other things, fairly
routine calculations show that theα-dimensional capacity of a ball of radiusε is of orderεα if α > 0, and
[log(1/ε)]−1 if α = 0. That is, Theorem 1.1 contains the hitting probability estimate (3.1) of Lecture 4.
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A more recent result, this time for the sheet is,

Theorem 1.2 (D. Kh. and Z. Shi) If E is a compact set inRd , P{B(R2
+)∩E 6= ?} > 0 iff Capd−4(E) >

0. In fact, for anyM > 0, there existsc1 andc2, such that for all compactE ⊂ [−M,M ]d,

c1Capd−4(E) ≤ P{B[1, 2]2 ∩ E 6= ?} ≤ c2Capd−4(E).

We will prove this shortly. However, let me mention a variant: supposeX1, . . . ,XN are i.i.d. isotropic
stable processes inRd all with indexα ∈ (0, 2]. This means that eachX` is anRd -valued Lévy process with
characteristic function

E{eiξ·X` (t)} = exp
(− 1

2‖ξ‖α
)
, ∀ξ ∈ Rd , t ≥ 0, ` = 1, . . . , d.

The 1
2 is to ensure that whenα = 2, X` is standard Brownian motion. Theα-dimensional,N -parameter

additive stable processis the random field

X(t) = X1(t1) + · · · + XN (tN ), ∀t ∈ RN
+ .

Theorem 1.3 (F. Hirsch and S. Song; MPP Ch. 11)If X is anN -parameter,d-dimensional additive sta-
ble process of indexα, and ifE ⊂ Rd is a given compact set, thenE is polar forX iff Capd−αN (E) > 0.

The above, together with the energy/covering arguments of Lecture 4 (cf. Theorem 3.1 there), this shows

Theorem 1.4 If X is anN -parameter,d-dimensional additive stable process of indexα,

dim(X(RN
+ )) = αN ∧ d, a.s.

The above two theorems provide us with processes that correspond to arbitrary dimensions and capaci-
ties.

2 Application to Stochastic Codimension

The preceeding has a remarkable consequence about a large class of random sets. We say that a ran-
dom setX ⊂ Rd hascodimensionβ, if β is the critical number such that for all compact setsE ⊂ Rd
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with dim(E) > β, P{X ∩ E 6= ?} > 0, while for all compact setsF ⊂ Rd with dim(F ) < β,
P{X ∩ F 6= ?} = 0. The notion of codimension was coined in this way in Kh-Shi ’99, but the essen-
tial idea has been around in the works of Taylor ’65, Lyons ’99, Peres ’95,· · ·

When it does exist, the codimension of a random set is a nonrandom number.

Warning: Not all random sets have a codimension.

As examples of random sets thatdo have codimension, we mention the following consequence of The-
orem 1.3:

Corollary 2.1 If Z denotes an(N, d)-additive stable process of indexα ∈ (0, 2], codim(Z[1, 2]N ) =
d− αN.

We now wish to use Theorem 1.3 to prove the following result. In the present form, it is from MPP Ch.
11, but ford = 1, it is from Kh-Shi ’99.

Theorem 2.2 (MPP Ch. 11) If X is a random set inRd that has codimensionβ ∈ (0, d),

dim(X) = d− codim(X), a.s.

That is, in the best of circumstances,

�
�

�
�dim(X) + codim(X) = topological dimension.

A note of warning: ifX is not compact,dim(X) can be defined bysupn≥1 dim(X ∩ [−n, n]d).

The proof depends on the following result that can be found in the works of Yuval Peres ’95, but with
percolation proofs.

Lemma 2.3 (Peres’ lemma)For eachβ ∈ (0, d), there exists a random setΛβ , whose codimension isβ.
Moreover,dim(Λβ) = d− β, almost surely.
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Proof Let Λβ = Z(RN
+ ), whereZ is an(N, d)-addtive stable process. The result follows from Corollary

2.1 and Theorem 1.4. �

Proof of Theorem 2.2By localization, we may assume thatX is a.s. compact. LetΛβ = ∪∞i=1Λ
i
β, where

Λ1
β,Λ2

β , . . . are iid copies of the sets in Peres’ lemma, and are all totally independent of our random setX.
Then, by Peres’ lemma and by the lemma of Borel–Cantelli,

P{Λβ ∩X 6= ? |X} =

{
0, on{dim(X) < β}
1, on{dim(X) > β} .

On the other hand, by the very definition of codimension,

P{Λβ ∩X 6= ? |Λβ} =

{
0, if codim(X) > d− β = dim(Λβ)
> 0, if codim(X) < d− β

.

Take expectations of the last two displays to see that for anyβ ∈ (0, d),

codim(X) < d− β =⇒ dim(X) ≥ β, a.s.

codim(X) > d− β =⇒ dim(X) ≤ β, a.s.

This easily proves our theorem. �

3 Proof of Theorem 1.2

We begin with an elementary, though extremely useful, lemma.

Lemma 3.1 (R. E. A. C. Paley and A. Zygmund)If Z ≥ 0 a.s., and ifZ ∈ L2(P),

P{Z > 0} ≥ |E{Z}|2
E{Z2} ,

where0÷ 0 = 0.

Proof By the Cauchy–Schwarz inequality,

E{Z} = E{Z; Z > 0}
≤

√
E{Z2}P{Z > 0}.
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Square and solve. �

Roughly speaking, the strategy of proof of Theorem 1.2 is to show thatB[1, 2]2 intersectsE iff the
occupation measure evaluated at somef ∈ P(E) is large, wheref ∈ P(E) means thatf is a probability
density function supported onE, where the latter is given by

O (f) =
∫

[1,2]2
f(B(s, t)) ds dt.

Lemma 3.2 For eachM > 0, there exists a constantc = c(M) > 1 such that for all pdf’sf on [−M,M ]d,

E{O (f)} ≥ c.

Proof The law of the variateB(s, t) is
√

stZ, whereZ = (Z1, . . . , Zd) is a vector of i.i.d. standard nor-
mals. The lemma follows from direct compmutations, since this pdf is easily seen to be bounded below on
[−M,M ]d. �

Lemma 3.3 For eachM > 0, there exists a constantc = c(M) > 1 such that for all pdf’sf on [−M,M ]d,

E
{∣∣O(f)

∣∣2} ≤ cEnergyd−4(f).

To develop Kakutani’s theorem by the methods of this lecture, start with

SOMETHING TO TRY: Let b = {bt; t ≥ 0} denoted-dimensional Brownian motion. Then, show that for
eachM > 0, there exists a constantc = c(M) > 1 such that for all pdf’sf on [−M,M ]d,

E
{∣∣∣ ∫ 2

1
f(bs) ds

∣∣∣2} ≤ cEnergyd−2(f).

Also show that there existsc = c(M) > 0, such that for all pdf’sf on [−M,M ]d,

E
{ ∫ 2

1
f(bs) ds

}
≥ c.
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Proof of Lemma 3.3Note that

E
{∣∣O (f)

∣∣2} = E
{ ∫

[1,2]2

∫
[1,2]2

f(B(s))f(B(t)) ds dt
}

= E
{ ∫

[1,2]2

∫
[1,2]2

f
(
B(s f t) + ξ1

)
f
(
B(sf t) + ξ1

)
ds dt

}

where

ξ1 = B(s)−B(s f t), and

ξ2 = B(t)−B(sf t).

Note that(i) ξ1 and ξ2 are independent; and(ii) the pdf of B(s f t) is bounded above by a constant,
uniformly for all s, t ∈ [1, 2]2. Indeed, the latter pdf, atx ∈ Rd , is

(2π)−
d
2 (s1 ∧ t1)−

d
2 (s2 ∧ t2)−

d
2 exp

(
− ‖x‖2

2(s1 ∧ t1)(s2 ∧ t2)

)
≤ 1.

Thus,

E
{∣∣O (f)

∣∣2} ≤ E
{ ∫

[1,2]2

∫
[1,2]2

∫
Rd

f(x + ξ1)f(x + ξ2) dx ds dt
}

= E
{ ∫

[1,2]2

∫
[1,2]2

∫
Rd

f(x)f(x + ξ2 − ξ1) dx ds dt
}

= E
{ ∫

[1,2]2

∫
[1,2]2

∫
Rd

f(x)f
(
x + B(t)−B(s)

)
dx ds dt

}
.

Now, we proceed to a variance estimate as we did in Lemma 2.2 of Lecture 2 ford = 1. Indeed, the variance
of each of the coordinates ofB(t)−B(s) is bounded above and below by constant multiples of|t−s|. This
leads to

E
{∣∣O (f)

∣∣2} ≤ c

∫
[1,2]2

∫
[1,2]2

∫
Rd

∫
Rd

f(x)f(x + y)
e
− |y|2

c|t−s|

|t − s| d2
dx dy ds dt

= cEnergyd−4(f),

after a few more lines of calculations. �

Proof of Theorem 1.2: Lower BoundIf there are pdf’s supported byE, choosef to be any one of them
and note that

O (f) > 0 =⇒ B[1, 2]2 ∩ E 6= ?.
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So, combine this with Lemmas 3.2 and 3.3 to get

P{B[1, 2]2 ∩ E 6= ?} ≥ P{O (f) > 0}

≥ |E{O (f)}|2
E{|O (f)|2}

≥ c
[
Energyd−4(f)

]−1
.

We have used the Paley–Zygmund inequality in the second-to-last line; cf. Lemma 3.1. This holds uniformly
over all pdf’sf onE. ReplaceE by its closeε-enlargementEε, we get

P{B[1, 2]2 ∩ Eε 6= ?} ≥ c
[

inf
µ∈P(Eε):

µ=absolutely continuous

Energyd−4(µ)
]−1

.

Any µ ∈ P(E) can be approximated, in the sense of weak convergence, by absolutely continuousµε ∈
P(Eε). A little Fourier analysis, then, shows that asε → 0, Energyα(µ) is approximable byEnergyα(µε);
cf. the last section of Lecture 4 for the requisite material on Fourier analysis. On the other hand,P{B[1, 2]2∩
Eε 6= ?} → P{B[1, 2]2 ∩E 6= ?}, asε → 0. This yields,

P{B[1, 2]2 ∩ E 6= ?} ≥ c
[

inf
µ∈P(E)

Energyd−4(µ)
]−1

,

which equalscCapd−4(E). �

We now turn to the more difficult

Proof of Theorem 1.2: Upper Bound (sketch)Define the 2-parameter martingaleMf by

Mf(t) = E{O (f) |F(t)},
wheref is a pdf onEε, andF is the natural 2-parameter filtration ofB. Clearly, for anys ∈ [1, 3

2 ]2,

Mf(s) =
∫

[1,2]2
E
{
f(B(t))

∣∣F(s)
}

dt

≥
∫

t< s:
t∈[1,2]N

E
{
f(B(t))

∣∣F(s)
}

dt

=
∫

t< s:
t∈[1,2]N

E
{
f
(
B(t)−B(s) + B(s)

) ∣∣F(s)
}

dt.

Now, recall that whenevert< s, B(t) − B(s) is independent ofF(s), and whose coordinatewise variance
is, upto a constant,|t− s|. A few more lines show that for anys ∈ [1, 3

2 ]2,

Mf(s) ≥ cGf
(
B(s)

)
,
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whereGµ(x) =
∫
Rd |x−y|−d+4 µ(dy) if d > 4,Gµ(x) =

∫
Rd log+( 1

|x−y|)µ(dy), if d = 4, andGµ(x) = 1,

if d < 4. Let T be any measurable variate in[1, 3
2 ]2 ∪ {∞}, such thatT 6= ∞ iff ∃s ∈ [1, 3

2 ]2 such that
B(s) ∈ E, and in which case,B(T) ∈ E. Then, ignoring null sets, we have

sup
s∈[1,

3
2 ]2

Mf(T) ≥ cGf
(
B(T)

) · 1{T 6=∞}.

Square both sides, and take expectations:

E
{

sup
s∈[1,

3
2 ]2

∣∣Mf(T)
∣∣2} ≥ cE

{∣∣Gf
(
B(T)

)∣∣2 · 1{T 6=∞}
}
.

Now, if P{T 6= ∞} = 0, there is nothing to prove. Else, chooseµ(•) = P{B(T) ∈ • |T 6= ∞}
(µ ∈ P(E)), to see that

E
{

sup
s∈[1,

3
2 ]2

∣∣Mf(T)
∣∣2} ≥ cE

{∣∣Gf
(
B(T)

)∣∣2 ∣∣T 6= ∞}× P{T 6= ∞}

≥ c
∣∣∣E{
Gf

(
B(T)

) ∣∣T 6= ∞}∣∣∣2 × P{T 6= ∞}

= c
∣∣∣ ∫

Gf(x)µ(dx)
∣∣∣2 × P{T 6= ∞}.

On the other hand, by Cairoli’s inequality, the left hand side is bounded above by16E{|O (f)|2} ≤
c′Energyd−4(f), thanks to Lemma 3.3. Combining things, we have, for this specialµ ∈ P(E),

cEnergyd−4(f) ≥
∣∣∣ ∫ Gf(x)µ(dx)

∣∣∣2 × P{B[1, 3
2 ]2 ∩ E 6= ?}.

This holds for any pdff . Now, choose pdf’sf that converge weakly toµ. A little Fourier analysis shows
that we can do this so that the energies of thef ’s also approximate that ofµ, and

∫
Gf(x)µ(dx) '∫

Gµ(x)µ(dx) = Energyd−4(µ). This completes our proof. �

SOMETHING TO TRY: Try and mimick the above sketched proof to show the upper bound in Kakutani’s
theorem. You may ignore the Fourier analysis details.

4 Kahane’s Problem

We come to the last portion of these lectures, which is on a class of problems that I call Kahane’s problem,
due to the work of J.-P. Kahane in this area.
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Kahane’s problem for a random fieldX is: “when doesX(E) have positive Lebesgue’s measure?” I
will work the details out for Brownian motion, where things are easier. The problem for the Brownian sheet
was partly solved by Kahane (cf. his ’86 book) and completely solved by Kh. ’99 in caseN = 2. Recent
work of Kh. and Xiao ’01 has completed the solution to Kahane’s problem and a class of related problems,
and we hope to write this up at some point. Here is the story for Brownian motion, where we work things
out more or less completely. The story for Brownian sheet is more difficult, and I will say some words about
the details later.

Theorem 4.1 (Kahane; Hawkes)If B denotes Brownian motion inR, and ifE ⊂ R+ is compact, then

E{|B(E)|} > 0 ⇐⇒ Cap 1
2
(E) > 0.

In particular,

dim(E) > 1
2 =⇒ |B(E)| > 0, with positive probability

dim(E) < 1
2 =⇒ |B(E)| = 0, a.s.

You can interpret this as a statement about hitting proabilities for the level sets of Brownian motion, viz.,∫
Rd

P{B−1{a} ∩E 6= ?} da > 0 ⇐⇒ Cap 1
2
(E) > 0.

I will prove the following for Brownian motion. It clearly implies the above theorem upon integration.

Theorem 4.2 SupposeE ⊂ [1, 2] is compact, and fixM > 0. Then, there existsc1 andc2 such that for all
|a| ≤ M ,

c1Cap 1
2
(E) ≤ P{a ∈ B(E)} ≤ c2Cap1

2
(E).

As a simple consequence of this and Frostman’s theorem, we see that the critical dimension forB−1{0}
to hit a set is1

2 . Equivalently, the zero set,B−1{0}, has codimension12 . Since the topological dimension of
B−1{0} is 1, by Theorem 2.2,

Corollary 4.3 (P. Lévy) With probability one,dim B−1{0} = 1
2 .
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Proof Without loss of any generality, we may and will assume thatE ⊆ [0, 1].
For anyµ ∈ P(E) and for alla ∈ R, define

Ja
ε (µ) = (2ε)−1

∫ ∞

0
1{|Bs−a|≤ε} µ(ds).

Then, for everyM > 0, there existsc such that

inf
ε∈(0,1)

inf
a∈[−M,M ]

E{Ja
ε (µ)} ≥ c, and

sup
a∈R

sup
ε∈(0,1)

E{|Ja
ε (µ)|2} ≤ Energy 1

2
(µ).

(4.1)

Now, we apply Paley–Zygmund inequality:

P{a ∈ B(E)} ≥ P{Ja
ε (µ) > 0}

≥ |E{Ja
ε (µ)}|2

E{|Ja
ε (µ)|2}

≥ c

Energy 1
2
(µ)

.

Since this holds for allµ ∈ P(E), we obtain the desired lower bound.
Let {Ft}t≥0 denote the filtration ofB and consider the martingale

Ma,ε
t (µ) = E{Ja

ε (µ) |Ft}, ∀t ≥ 0.

Clearly,

Ma,ε
t (µ) ≥ (2ε)−1

∫
s≥t

P{|Bs − a| ≤ ε |Ft}µ(ds) · 1{|Bt−a|≤ ε
2
}

≥ (2ε)−1

∫
s≥t

P{|Bs−t| ≤ 1
2ε}µ(ds) · 1{|Bt−a|≤ ε

2
}

≥ cε−1

∫
s≥t

( ε√
s− t

∧ 1
)

µ(ds) · 1{|Bt−a|≤ ε
2
}

Let σε = inf{s ∈ E : |Bs − a| ≤ 1
2ε}. This is a stopping time and on{σε < ∞},

Ma,ε
σε

(µ) ≥ cε−1

∫
s≥σε

[ ε√
s− σε

∧ 1
]
µ(ds),

since all bounded Brownian martingales are continuous. Now, we chooseµ carefully: WLOGP{σε <
∞} > 0 which implies thatµε ∈ P(E), where

µε(•) = P{σε ∈ • |σε < ∞}.
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Thus, by the optional stopping theorem,

1 ≥ E{Ma,ε
σε

(µε);σε < ∞}
≥ cε−1

∫∫
s≥t

( ε√
s− t

∧ 1
)

µε(ds)µε(dt) · P{σε < ∞}

≥ c

2
ε−1

∫∫ ( ε√
s− t

∧ 1
)

µε(ds)µε(dt) · P{σε < ∞}

=
c

2

∫∫ ( 1√
s− t

∧ 1
ε

)
µε(ds)µε(dt) · P{σε < ∞}.

Fix δ0 > 0 and from the above deduce that for allε small,

1 ≥ c

2

∫∫
|s−t|≥δ0

|s− t|− 1
2 µε(ds)µε(dt) · P{ inf

t∈E
|Bt − s| ≤ 1

2ε}.

Let ε → 0, and envoke Prohorov’s theorem to getµ ∈ P(E) such that

P{a ∈ B(E)} ≤ 2
c

[ ∫∫
|s−t|≥δ0

|s− t|− 1
2 µ(ds)µ(dt)

]−1
.

Let δ0 ↓ 0 to finish. �

To prove the general result for a Brownian sheet, one needs the properties of the processB around a
time pointt. There are2N different notions of ‘around’, one for each quadrant centered att, and this leads to
2N differentN -parameter martingales, each of which is a martingale with respect to a commuting filtration,
but each filtration is indeed a filtration with respect to a different partial order. The details are complicated
enough forN = 2 and can be found in my paper in theTransactions of the AMS(1999). WhenN > 2, the
details are more complicated still and will be written up in the future. The end result is the following:

Theorem 4.4 (Kh and Xiao ’01) If B denotes(N, d) Brownian sheet andE ⊂ RN
+ is compact,

E{|B(E)|} > 0 ⇐⇒ Cap d
2
(E) > 0.

To recapitulate the picture we have, by Theorem 1.2, whend ≥ 2N , E{|B(RN
+ )|} = 0. Thus, the above

addresses portions of the range in the remaining low-dimensional cased < 2N . A consequence of this
development is that

dim(E) > d
2 =⇒ |B(E)| > 0, with positive probability

dim(E) < d
2 =⇒ |B(E)| = 0, a.s.
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I will end with a related

CONJECTURE: SupposeX is an(N, d) symmetric stable sheet with indexα ∈ (0, 2) (see below.) Then, for
any compactE ⊂ RN

+ , E{|X(E)|} > 0 iff Cap d
α
(E) > 0.

At the moment, this seems entirely out of the reach of the existing theory, but the analogous result for
additive stable processes, and much more, holds (joint work with Xiao–will write up later.)

To finish: {Xt; t ∈ RN
+ } is an(N, d) symmetric stable sheet if it has i.i.d. cooridinates and the first

coordinate has the representationX1
t =

∫
1{04 s4 t}X(ds), whereX is a totally scattered random measure

such that for every nonrandom measurableA ⊂ RN
+ , E{exp[iξX(A)]} = exp(−1

2 |A| ‖ξ‖α). (Scattered
means that for nonrandom measurableA andA′ in RN

+ , if A ∩A′ = ?, X(A) andX(A′) are independent.)
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Barlow, M. T. and E. Perkins (1984). Levels at which every Brownian excursion is exceptional. InSeminar on
probability, XVIII, pp. 1–28. Berlin: Springer.

Bass, R. (1987).Lp inequalities for functionals of Brownian motion. InŚeminaire de Probabilit́es, XXI, pp. 206–
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Körezlioğlu, H., G. Mazziotto, and J. Szpirglas (Eds.) (1981).Processus aléatoiresà deux indices. Berlin: Springer.
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Théor. 64(3), 339–347.

Perkins, E. (1982). Weak invariance principles for local time.Z. Wahrsch. Verw. Gebiete 60(4), 437–451.

Pollard, D. (1984).Convergence of Stochastic Processes. New York: Springer-Verlag.
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