
LECTURE 9: BROWNIAN MOTION AND DIFFUSION

§1. MONTE-CARLO SIMULATION

(1.1) The St.-Petersbourg Paradox. Let W denote Brownian motion, and for any
number λ > 0 (say λ = 1 for the sake of concreteness) define

(1.2) Tλ := min {s ≥ 0 : W (s) = λ} ,

which is the first time Brownian motion attains the level λ. For this random variable,
one has the property that P{Tλ < ∞} = 1, and yet E{Tλ} = +∞. That is, although
Brownian motion will eventually reach λ, it is never expected to! This is a variant of the
St.-Petersbourg paradox of gambling. That P{Tλ < +∞} = 1 is not hard to see on a
simulation. But how does one verify that E{Tλ} = +∞? One starts with a formula from
measure theory:

(1.3) E{Tλ} =
∫ ∞

0

P{Tλ > x} dx.

So if we could show that as x → ∞, P{Tλ > x} ∼ Cx−1/2 (say), it would follow that for
large n,

∫∞
n

P{Tλ > x} dx ∼ C
∫∞

n
x−1/2 dx = +∞. This is indeed the case:

(1.5) Theorem. For each λ > 0, there exists some uninteresting constant C such that as
x →∞, P{Tλ > x} ∼ Cx−1/2.

(1.6) Simulation Verification. How does one verify this theorem by simulation methods?
Note that P{Tλ > x} is an expectation and hence can be simulated by Monte–Carlo
simulation (cf. Lecture 6, Exercise 1.10). Indeed, P{Tλ > x} = E{1{Tλ>x}}. So, one can
Monte-Carlo-simulate this by generating a large number (N) of independent Brownian
motions W 1, . . . , WN , each until the first time they hit λ. Let T 1

λ , . . . , TN
λ denote their

respective hitting times to λ and note that T 1
λ , . . . , TN

λ are independent and identically
distributed. Thus, by Kolmogorov’s strong law of large numbers (Theorem 0.1, Lecture
2),

(1.7) lim
N→∞

1
N

N∑
`=1

1T `
λ

>x} = P{Tλ > x}.

In words, generate N independent Brownian motions and see how many of them take up
at least x units of time to reach λ. If N is large, then this should be close to P{Tλx}. Now
conjecture that for some α > 0, P{Tλ > x} ≈ x−α. If so, then log P{Tλ > n} ∼ −α log n
for large n, and this means that if you plot the log-plot of the function P{Tλ > x}, you
will see a constant function; the constant is −α and, thanks to Theorem (1.5), it should
be equal to −1

2 . ♣
(1.8) Random Walk Projects. Suppose S denotes the two-dimensional simple walk; fix
some nice set A ⊂ R2, and let TA := min{n ≥ 0 : Sn ∈ A} be the first time that you hit
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that set. For instance, A could be a single point {(1, 1)} (say), a curve, etc. Can you find
the extent to which the geometry of A affects the rate of decay of P{TA > x} as x →∞?
For instance, can you detect a discernable difference between the two cases A := {(1, 1)}
and A := the square {(x, y) : |x| = 1, |y| = 1}? (There is a huge difference.)

(1.9) Brownian Motion Projects. Continuing with our discussion of (1.8), we may ask,
“what if the set A changes with time?” The most interesting case is if A is replaced by√

nA. To be conrete, consider the example of (1.6) but replace λ by
√

xλ; let us also write
n for x to remind ourselves that it is an integer. So, to summarize: Let Sn := the simple
walk on Z, and more generally consider P{T√nλ > nx}, where Tm denotes the first time
the random walk hits m for any m. Then, by Donsker’s theorem (Theorem 2.1, Lecture
8),

(1.10) lim
n→∞P{T√nλ > nx} = P{Tλ > x},

and recall that Tλ is the first time Brownian motion hits λ. If instead of
√

nλ you write
nαλ for α 6= 1

2 , then nothing interesting happens. Either the probabilities are too small,
or they converge to positive constants.

§2. ITÔ DIFFUSIONS

(2.1) A Model in Discrete Time. Suppose that you want to model the random-walk-
like movement of a particle in space, but now the space is inhomogeneous, so that in
some parts, the walk moves rapidly, and in others very slowly. (Think of a random walk
in space that is in part filled with air and in part with oil.) We will restrict “space” to
one-dimensions since it is easier to imagine what is going on.

One way to proceed is to construct independent molecular fluctuations, X1, X2, . . . .
These are—as before—equal to ±1 with probability 1

2 each, and are independent random
variables. Our “diffusion” (or random walk in inhomogeneous media) will be denoted by
the process Y0.Y1, . . ., where Y0 is wherever the process starts (say at the origin.) So,
Y0 := 0, and having constructed Y0, . . . , Yk, define Yk+1 := Yk + a(Yk)Xk+1, where the
function a tells us how much to alter the usual fluctuations of the ordinary walk (based
on X ’s), depending on where the diffusion Y is at time k. For instance, by sure that you
understand that if the function a(x) := 2 for all x, then the diffusion Y is just a simple
walk times 2; i.e., a simple walk that fluctuates twice as wildly. We can add a drift term
to this diffusion as well to model the effect of a push. That is, Yk+1 = a(Yk)Xk+1 + b(Yk).

(2.2) Itô Diffusions in Continuous Time. Just as Brownian motion was obtained as
limits of random walks, we can proceed to construct continuous-time diffusions by discrete-
time approximations. Here is the simulation algorithm; it will construct an Itô diffusion
in continuous time whose fluctuation are guided by some function a and whose drift is by
some function b:

(2.3) Y (0) := 0, Y

(
k + 1

n

)
:= Y

(
k

n

)
+ a

(
Y

(
k

n

))
· Xk+1√

n
+ b

(
Y

(
k

n

))
· 1
n

.
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The 1/
√

n term is just central limit theorem scaling as in Donsker’s theorem for Brownian
motion. Indeed, if a(x) := 1 and b(x) := 0, the process Y is Brownian motion. Another
way to write this is to bring the term Y (k/n) to the left-hand side to convince yourselves
that Y “solves” the following “stochastic differential equation:”

(2.4) dY (t) = a(Y (t))dW (t) + b(Y (t))dt,

where W is Brownian motion.

(2.5) Warning. The above stochastic differential equation has very different properties
(as well as a different meaning) than ordinary differential equations of the calculus of real
functions. For instance, Paley, Wiener, and Zygmund proved that with probability one, the
Brownian motion W is nowhere differentiable, so that dW (t) is not the usual “differential.”
[See R. E. A. C. Paley, N. Wiener, and A. Zygmund (1933). Notes on random functions,
Math. Zeit., 37, 647–668.] The difference is best seen when trying to understand Itô’s
formula that is next.

(2.6) Itô’s Formula. If you consider two differentiable functions f and g, then by the
chain rule of the calculus of real functions,

(2.7) (f(g))′ = f ′(g)× g′.

If g is the random function W instead (i.e., Brownian motion), it is nowhere differentiable
(cf. 2.6 above), and hence W ′(s) does not exist at any s. Itô’s formula tells us what
happens to chain rule in this case: For a twice continuously differentiable function f ,

(2.8) f(W (t)) = f(W (0)) +
∫ t

0

f ′(W (s)) dW (s) +
1
2

∫ t

0

f ′′(W (s)) ds,

where the “stochastic integral”
∫

f ′dW needs to be defined. It can be shown to satisfy the
following natural approximation, but the choice of the so-called left-point rule is absolutely
essential now:

(2.9)
∫ t

0

g(W (s)) dW (s) = lim
n→∞

n∑
j=0

g

(
W

(
jt

n

))
×

{
W

(
(j + 1)t

n

)
−W

(
jt

n

)}
,

where “limit” needs to be understood in some carefully stated sense. What is important
about this approximation is that it shows quite clearly that the stochastic integral will
have mean zero always! Indeed, note that g(W (jt/n)) and {W ((j + 1)t/n)−W (jt/n) are
independent thanks to Einstein’s predicate (1.5c, Lecture 8). Now elementary probability
theory tells us that whenever ξ and ζ are independent random variables, then E{ξζ} =
E{ξ}E{ζ}. Since E{W (t) − W (s)} = 0, this shows that stochastic integrals are always
mean-zero processes; i.e.,

(2.10) E

{∫ t

0

g(W (s)) dW (s)
}

= 0.
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(2.11) Itô’s Formula for the Diffusion Y. The diffusion Y also has an Itô formula; it
is the following more complicated one:

(2.12) f(Y (t)) = f(Y (0)) +
∫ t

0

f ′(Y (s)) dY (s) +
1
2

∫ t

0

f ′′(Y (s)) [a(Y (s)]2 ds.

Plug the value of dY (s) from (2.4) and we obtain the Itô formula,

(2.13)
f(Y (t)) =f(Y (0)) +

∫ t

0

f ′(Y (s))a(Y (s)) dW (s) +
∫ t

0

f ′(Y (s))b(Y (s)) ds

+
1
2

∫ t

0

f ′′(Y (s)) [a(Y (s)]2 ds.

The point is that this formulation has a stochastic integral in terms of dW which we have
already seen is mean-zero.

(2.14) Existence of the Diffusion. Unfortunately, the simulation algorithm of (2.3) will
produce something that yields nonsense unless the functions a and b are “nice.” By this
I mean that the Itô equation (2.4) will have solutions only if a and b are nice. One such
condition is that a′ and b′ exist and are bounded functions. Under this condition, with
probability one, (2.4) can be shown to have a unique solution process Y .
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