
LECTURE 4: OTHER RELATED MODELS

Having discussed some of the basics for simple walks, I will start talking about various
different related model, to help you choose a research topic as soon as possible.

§1. MORE ON THE SELF-AVOIDING WALK
Recall the self-avoiding walk from §4 of Lecture 3. A number of interesting questions

present themselves that you may wish to think about:

♠ Open Problem 1. One can show, by appealing to subadditivity
again, that the self-avoiding walk on any regular lattice L satisfies

lim
n→∞

log χn

n
= c(L),

exists, and c(L) is the connectivity constant of the lattice L. In
particular, c(Zd) is nothing but the constant C(d) of Lecture 3, §4.
Two possible starting points for your research along these lines:

♥ Find a numerical method for computing c(L) for some inter-
esting lattices L such as Z2, Z3, or the hexagonal lattice.

♥ Can you numerically verify the conjecture that for the honey-
comb lattice, the connectivity constant is

√√
2 + 2?

♠ Open Problem 2. It is conjectured that, quite generally, there ex-
ists a universal constant α such that on any lattice L ⊆ Zd, χn

grows like a constant times nα(c(L))n. The point is that α is sup-
posed to be independent of the choice of the lattice but can (and
ought to) depend on the ambient dimension d. Assuming this hy-
pothesis, can you find a numerical approximation for α when d = 2?
Physicists conjecture that when d = 2, α = 43

32 .
♥ For any x ∈ Rd, let |x|2 := x2

1 + · · ·+ x2
d denote the square

of the distance between x and the origin. If Xn denotes the
position of the randomly selected self-avoiding path of length
n in Zd, what is An := E{|Xn|2}? It is conjectured that An

should grow like a constant times nβ for some constant β. Can
you numerically estimate β? When d = 2, β is conjectured to
be 3

4 . This would suggest that self-avoiding walks grow faster
than “diffusions,” which is why this type of growth is called
“super-diffusive.” (Another phrase that refers to this property
is “anamolous diffusion.”)

♥ Can you find numerical ways to estimate E{|Xn|p} for some
other values of p > 2 as well? It is conjectured that E{|Xn|p}
should behave like the square of E{|Xn|p/2} as n →∞.
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§2. DIFFUSION-LIMITED AGGREGATION (DLA)
Diffusion-limited aggregation (or DLA) is a mathematical model devised by Witten

and Sanders to model crystal growth. The aim is to grow a random set in Zd, in successive
time-steps, in order to obtain a sequence of growing random sets A(0) ⊆ A(1) ⊆ · · ·.

To start with, set A(0) = {0} so this means that at “time” 0, the “crystal” is a point.
Then start a random walk from infinitely (or nearly) far away from A(0) and wait until this
random walk hits a neighbor of A(0). This defines the crystal at time 1; namely, let A(1)
be the set comprised of the origin together with this last value of the stopped random walk.
Having created A(n), create A(n+1) by, once again, starting an independent random walk
infinitely far awar from A(n) and waiting until it hits a neighbor of A(n). Add that point
to A(n) to create A(n + 1) and so on.

Although there are many predictions and conjectures, very few facts are rigorously
known to be true. Here are some suggestions for interesting problems that you can try
to learn about by simulation analysis. You may be able to come up with others. (Don’t
forget library and web research for further gaining inspiration and motivation.)

♠ Open Problem 1. One of the big open problems in this area is to
decide whether or not A(n) grows by growing long spindly arms.
(The conjecture is that it does; this should make physical sense to
you.) Can you decide if this is so? To what extent does the “shape”
of A(n) depend on the geometry of the lattice on which the random
walks are being run?

♠ Open Problem 2. Since the notion of “shape” is not usually easy to
grasp, one can ask simpler questions that are still quite interesting.
For instance, how long are the arms of the DLA? (This is the title
of a 1987 paper of Harry Kesten by the way.) In 1987, H. Kesten
proved that for DLA on Zd, if rn := max{|x| : x ∈ A(n)}, then with
probability one, rn grows more slowly than n2/3 if d = 2 and more
slowly than n2/d if d = 3. While these results have been improved
by the subsequent works of H. Kesten as well as those of G. Lawler,
the known facts are very far from what is expected to be the true
growth rate of A(n). Can you decide what this rate is? Let me be
more concrete. Suppose rn grows like a constant times nβ for some
exponent β. Can you find a simulation prediction for β?

§3. INTERNAL DIFFUSION-LIMITE AGGREGATION (IDLA)
In 1991, Diaconis and Fulton formulated a means by which subsets of certain com-

mutative rings could be multiplied together. This uses a random process that is (like) a
random walk on that commutative ring. When the said ring is Zd, their “random walk”
becomes the following random process known as the internal diffusion-limit aggregation
(IDLA for short):

Let A(0) = {0}; having defined A(0), . . . , A(n), we now construct A(n+1) by running
a random walk, independently of all else, until the random walk hits a point that is not in
A(n). When that happens, stop the walk and add the newly-visited point to A(n) thereby
creating A(n + 1).
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This is a simpler process than the DLA, but it is far from being a simple object. Here
is a fact that was shown to be true by M. Bramson, D. Griffeath, and G. Lawler (1992):

(3.1) Asymptotic Shape of the IDLA. Let Bd denote the ball of radius 1 in Zd, and
let ωd denote its volume (e.g., ω1 = 2 and ω2 = π.) Then, as n → ∞, the following
happens with probability one:

(3.2)
(ωd

n

) 1
d

A(n) ⇒ Bd,

where by ⇒ I mean that for any ε > 0, the left-hand side is eventually contained in the
ε-enlargement of Bd (i.e., ball of radius (1 + ε) for any ε), and eventually contains the
ε-reduction of Bd (i.e., the ball of radius (1− ε)).

In other words, for large values of n (i.e., in large time), the IDLA set A(n) looks
more and more like the centered ball of radius (n/ωd)1/d. For instance, when d = 2, this
is the centered ball of radius

√
n/π.

♠ Open Problem 1. What happens in other lattices? For instance,
what about the hexagonal or the triangular lattice? What if the
lattice is inhomogeneous? (This is due to Matthew Taylor.)

♠ Open Problem 2. Continuing with the above, what if you have a
lattice that is random? For instance, suppose you run a random
walk on the infinite cluster of an independent percolation process
(see §5 below). Then what behavior should you expect to see?

♠ Open Problem 3. One may think that A(n) really looks filled in
and like a ball. However, in her Ph. D. thesis, D. Eberz has proven
that with probability one, there exist infinitely many n’s such that
A(n) “has holes” in it. A good research problem would be to explore
the fluctuations; i.e., to explore how different A(n) is from the ball.
As a concrete way to state this, consider the number of points that
are (i) in A(n) and not in (n/ωd)1/dBd; or are (ii) in (n/ωd)1/dBd

but not in A(n). How many of them are there for large values of n?
To be even more concrete, hypothesize that this number grows like
a constant times nγ . Can you estimate γ by simulation analysis?

§4. BOND PERCOLATION
For any number 0 < p < 1, and for any lattice L, we can define bond percolation

on L as follows: Each edge of L is open with probability p and closed with probability
(1− p), and all edges are open/closed independently from one another. We can then say
that percolation occurs if with positive probability, one can find some random open path
that connects a given point of L (call it the origin) to infinity (i.e., if there is an infinite
self-avoiding path emenating from the origin, all of whose edges are open.)
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Let θ(p) denote the probability of percolation on a given lattice. That is, θ(p) is the
probability that there is an infinite open connected path starting from the origin.

(4.1) The Critical Probability. There exists a critical probability pc such that whenever
p > pc, θ(p) > 0, but when p < pc, θ(p) = 0.

This follows from showing that θ(p) increases as p goes up; although it is true, this is
not a trivial fact. Here is how you prove it:

Proof: On each edge e in the lattice, set down independent edge-weights Xe such that
P{Xe ≤ x} = x for all x ∈ [0, 1]. In other words, Xe is uniformly distributed on [0, 1].
Now every time Xe ≤ p, call that edge open, otherwise it is closed. This procedure produces
the percolation process with parameter p simultaneously for all p, since P{e is open } =
P{Xe ≤ p} = p. Moreover, if Xe ≤ p, then for any p′ > p, Xe ≤ p′ also. Therefore,
the percolation cluster for p is contained in the percolation cluster for p′. In particular,
if there is percolation at level p, there is certainly percolation at level p′. This is another
way to state that θ(p) ≤ θ(p′). To finish, define pc to be the smallest value of p such that
θ(p) > 0. This is well-define since θ is increasing (draw a picture!) ♣
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