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FOREWORD

These notes constitute sketches from my July and August lectures on random walks
for the Summer REU Program at the Department of Mathematics, The University of Utah.
In addition to my eleven lectures on the subject of random walks and their applications,
we had a lecture by Prof. Nelson Beebe (U of U) on ”Random Number Generation and
Network Security,” as well as several lectures by the participants on their research.

Participants. There were three research groups comprised of undergraduate researchers,
and three graduate students. The research groups presented one or two lectures each, all
based on their summer research. It is expected that some or all of this will be ready in
a report-format by the middle of the Fall 2002 semester. Also in attendance were John
Schweitzer and Matthew Taylor.

The participating graduate students presented two lectures each on a topic of their
choice. The participants and their lecture titles are listed below:

Graduate Students. Lars Louder (U of U) Title: Random walks and electrical networks;
Sarah Geneser (U of U) Title: Matlab tutorials; Robert Thorpe (U of U) Title: Three
Games of chance.

Undergraduate Students. The attending undergradautes’ lectures/teams were:
Team 1. Micah Allred (BYU) Amanda Ellis (U of U). Title: The Mathematics of Finance,

Numerical Solutions to Stochastic Differential Equations, and Simulating the Wright–
Fischer Model for Gene Frequencies.

Team 2. Rex Butler (U of U). Title: The Linear and Nonlinear Voter Models, Random Cellular
Automata, and Interacting Particle Systems.

Team 3. Ron McKay and Song Du (U of U). Title: Numerical Computation of Hitting Proba-
bilities of Brownian Motion.

Davar Khoshnevisan
Salt Lake City, UT, August 2002
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LECTURE 1: THE SIMPLE WALK

The simple random walk is a mathematical motion for one-dimensional molecular
motion, and is defined as follows: At time n = 0, the particle’s position is S0 = 0. Then
you toss a fair coin to go left or right with probability 1

2 each. Let S1 denote the position
of the particle at time 1 obtained in this way. Now repeat the process, making sure that
everytime you toss a coin, it is tossed independently of the coin preceding it. This gives
you a random (or stochastic) process S := {Sn}n≥1.

You can think of the process S as a random “dynamical system.” It is a dynamical
system roughly because you apply the same procedure at time n to determine the value
at time n + 1; it is random since this procedure involves random tosses of coins.

§1. A COMBINATORIAL INTERPRETATION
Suppose you want to know the probability that the random process S has “done

something before time n.” For instance, what is the probability that some time before time
n, the random walk passed the point k. (In symbols, P{max1≤j≤n Sj ≥ k} =?) Or, what is
the probability that you never hit zero before time n (In symbols, P{min1≤j≤n Sj > 0} =?)

Combinatorics (or counting) give us one way to make such calculations. Let us say
that π0, π1, π2, . . . , πn is a path of length n if π0 = 0, and for all 1 ≤ i ≤ n, |πi+1 − πi| = 1.
Note that each realization of the random walk by time n gives a path of length n.

(1.1) Observation. There are 2n paths of length n. Moreover, if π0, . . . , πn is any given
path of length n, then

P {S1 = π1, . . . , Sn = πn} = 2−n.

In other words, all paths are equally likely to be the random walk path. This is an
easy exercise.

§2. A PROBABILISTIC INTERPRETATION
For i = 1, 2, · · · define Xi := Si − Si−1. The values X1, X2, . . . are the displacement

values at times 1, 2, · · ·. In other words, if the coin at time j told us to go to the right,
then Xj = +1, else Xj = −1. Since the coins were independent, the Xi’s are independent
random variables. Finally, they all have the same distribution which is given by P{X =
−1} = P{X = +1} = 1

2 . Finally, note that Sn = X1 + · · ·+ Xn.

Notation. Any process of the form Tn = Y1 + · · ·+ Yn, where the Yi’s are independent
and identically distributed, is called a random walk. In particular, the simple walk is a
random walk.

§3. PRELIMINARY CALCULATIONS
Let us compute a few momonts to get a feeling for the behavior of the simple walk S.

First,
E{Sn} = E{X1}+ · · ·+ E{Xn}.
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But the Xi’s are have the same distribution, and so they all have the same expectation,
which is E{X} = 1×P{X = 1}+ (−1)×P{X = −1} = 1× 1

2
+ (−1)× 1

2
= 0. Therefore,

we have

(3.1) Expected Value. For each n, E{Sn} = 0.

Suppose you are playing a fair game many times in succession. Everytime you play,
the probability of winning a dollar is the same as that of losing (i.e., = 1

2 ), and you play
the game independently each time. Then, Sn is the fortune (if > 0 and loss if ≤ 0) that
you have amassed by time n. The above tells us that you expect to come out even in a
fair game. Not a surprise. But there are fluctuations and the expected fluctuation is the
standard deviation, i.e., the square root of the variance.

(3.2) Variance. For each n, Var(Sn) = n.

Proof: In order to make this computation, recall that for any random variable Y , Var(Y ) =
E(Y 2)− |E{Y }|2. Therefore, Var(Sn) = E{S2

n}. We compute this as follows: First note
that

S2
n = (X1 + · · ·+ Xn)2 =

n∑
j=1

X2
j +

∑∑
i6=j

XiXj .

When i 6= j, Xi and Xj are independent, so E{XiXj} = E{Xi}E{Xj}, which is 0.
Therefore, E{S2

n} =
∑n

j=1 E{X2
j } = nE{X2}. But E{X2} = 12 × P{X + 1} + (−1)2 ×

P{X = −1} = 1, which shows us that the variance of Sn is indeed n. ♣
On the other hand, we could get an even better idea of the size of Sn by computing

higher moments. Note that E{S4
n} = E{|Sn − E(Sn)|4}.

(3.3) Fourth Moment. For each n, E{S4
n} = 3n2 − 2n.

Proof: We proceed as before and expand S4
n:

S4
n =

n∑
i=1

X4
i +

(
4
2

)
· 1
2

∑ ∑
i6=j

X2
i X2

j

+
(

4
3

) ∑ ∑
i6=j

XiX
3
j +

4!
1! · 1! · 2!

· 1
2

∑ ∑∑
i6=j 6=k

XiXjX
2
k

+
4!

1! · 1! · 1!1!

∑ ∑ ∑∑
i6=j 6=k 6=l

XiXjXkXl.

By the independence of the X ’s, and since their means are 0, after we take expectations,
only the first two terms contribute, i.e.,

E{S4
n} = nE{X4}+

4!
2! · 2!

n(n− 1)
2

(
E{X2}

)2
= nE{X4}+ 3n(n− 1)

(
E{X2}

)2
.

But we have already seen that E{X2} = 1, and one computes just as easily that E{X4} =
1. The calculation of the fourth moment follows. ♣
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§4. CHEBYSHEV’S AND MARKOV’S INEQUALITIES
The Markov, and more generally, the Chebyshev inequality are inequalities that state

that for random variables that have sufficiently many moments are large with very little
probability.

(4.1) Markov’s Inequality. Suppose X is a nonnegative random variable. Then for all
λ > 0,

P{X ≥ λ} ≤ E{X}
λ

.

Proof: For any number (random not) X ≥ 0, we have X ≥ X1{X≥λ} ≥ λ1{X≥λ}, where
1A is the indicator of the event A, i.e.,

(4.2) 1A =
{

1, if A happens,
0, if Ac happens.

Therefore, we take expectations to deduce that

(4.3) E{X} ≥ λE
(
1{X≥λ}

)
= λP{X ≥ λ},

since for any random event A, E(1A) = 1× P{A}+ 0× P{Ac} = P{A}. Divide (4.3) by
λ > 0 to get Markov’s inequality. ♣

Markov’s inequality states that if X ≥ 0 has a finite mean, then the probability that
X is large is very small. If X has more moments, this probability is even smaller in sense.

(4.4) Chebyshev’s Inequality. Suppose X is a random variable that has a finite vari-
ance, and let µ := E{X} denote its means. Then for all λ > 0,

P{|X − µ| ≥ λ} ≤ Var(X)
λ2

.

Proof: Let Y := |X − µ|2 and note that P{|X − µ| ≥ λ} = P{Y ≥ λ2}. Since E{Y 2} =
Var(X), apply Markov’s inequality to finish. ♣

There are higher-moment versions of Chebyshev’s inequality. Here is one. I will omit
the proof, since it is the same as that of (4.4).

(4.5) Chebyshev’s Inequality for Fourth Moments. Suppose X is a random variable
that has a finite fourth moment, and suppose E{X} = 0. Then for all λ > 0,

P{|X | ≥ λ} ≤ E{X4}
λ4

.
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LECTURE 2: THE SIMPLE WALK IN DIMENSION ONE

Laws of large numbers are a class of results that state that, in one way or another,
averaging many independent random quantities yields their expectation as long as you
average enough things.

For example, suppose you wanted to know the average output α of a machine. If you
could simulate the output of this machine on your computer, it would be natural to run
several simulations, average the outputs, and declare that as an “estimate” for α. The
following shows that this procedure actually works. You may need to refer to §2 of Lecture
1 for further motivation.

(0.1) Kolmogorov’s Strong Law of Large Numbers. Suppose X1, X2, . . . are inde-
pendent and identically distributed. If Sn := X1 + · · · + Xn denote the corresponding
random walk, and if µ := E{X1} exists, then

P

{
lim

n→∞
Sn

n
= µ

}
= 1.

In the unbiased case where µ = 0, this shows that the asymptotic value of the walk is
much smaller than n. In fact, in most of these cases, the asymptotic value is of order

√
n.

(0.2) The Central Limit Theorem. Suppose X1, X2, . . . are independent and identi-
cally distributed. If Sn := X1 + · · · + Xn denote the corresponding random walk, and if
E{X1} = 0 and 0 < σ2 := Var(X1) < +∞, then for any real number x,

lim
n→∞P

{
Sn√

n
≤ x

}
=

1√
2πσ2

∫ x

−∞
e−y2/2σ2

dy.

In the physics literature, this type of
√

n-growth is referred to as “diffusive.”

§1. THE STRONG LAW FOR THE SIMPLE WALK
Once again, Sn is now the simple walk (on the integer lattice). While the general

form of the Kolmogorov strong law is a rather difficult result, for the simple walk, things
are not so bad as we shall see.

Here is a start: Let us apply Chebyshev’s inequality from (4.4) of Lecture 1 to see
that for any ε > 0,

(1.1) P {|Sn| ≥ nε} ≤ Var(Sn)
n2ε2

=
1

nε2
.

We are using two more facts from Lecture 1. Namely, that the expectation of Sn is zero
(3.1, Lecture 1) and its variance is n (3.2, Lecture 1). This shows that for any ε > 0
(however small),

lim
n→∞P

{∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

}
= 0.
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This is not quite as strong as the strong law, but it has the right flavor. We will enhance
this calculation to get the strong law.

Proof of The Strong Law For the Simple Walk: We can improve (1.1) by using higher
moments than the second moment (i.e., the variance). Namely, let us use the Chebyshev
inequality for fourth moments (4.5, Lecture 1) and the fact that E{S4

n} = 3n2− 2n ≤ 3n2

(3.3, Lecture 1) to obtain the following: For all ε > 0,

(1.2) P {|Sn| ≥ nε} ≤ E{S4
n}

ε4n4
≤ 3

ε2n2
.

So in fact the abov probability goes to zero faster than the rate of (nε2)−1 stated in (1.1).
Now let N denote the number of times the random walk is at least nε units away from
the origin. That is,

N :=
∞∑

n=1

1{|Sn|≥nε},

where 1A is the indicator of the event A; cf. (4.2, Lecture 1). Since E{1A} = P{A},
E{N} =

∑∞
n=1 P{|Sn| ≥ nε}. In particular, by (1.2) above, and using the fact that

1, 1
4 , 1

9 , . . . , 1
n2 , · · · is a summable sequence, we see that E{N} < +∞. This means that N

is finite with probability one. In other words, we have shown that with probability one,
for any ε > 0, there exists a random time N past which |Sn| ≤ nε. This is the same as
saying that with probability one, Sn/n → 0. ♣

§2. RETURNS TO THE ORIGIN
What we have done is to show that Sn is much smaller than n as n →∞. One rough

explanation for this is that Sn is fluctuating as n →∞; so much so that it has little time
to go very far from the origin. This is one of the reasons that the movement of the simple
walk has proven to be an important model for “one-dimensional molecular motion.” (The
more realistic three-dimensional setting will be covered soon.)

One way in which we can study the said fluctuation phenomenon more precisely, is
by considering the notion of recurrence. In the context of nonrandom dynamical systems,
this notion is due to the work of H. Poincaré.

Remember that S0 is zero. That means that the random walk always starts at the
origin. So it makes sense to consider Nn which is the number of returns to the origin by
time n; i.e.,

Nn :=
n∑

j=1

1{Sj=0}, n = 1, 2, 3, . . . .

(2.1) The Expected Number of Returns. As n → ∞, E{Nn} ∼
√

2n/π, where
an ∼ bn means that an/bn → 1 as n →∞.

Proof: Note that

E{Nn} = E

 n∑
j=1

1{Sj=0}

 =
n∑

j=1

P{Sj = 0}.
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So it suffices to estimate P{Sj = 0} for j →∞. First, we note that if j is an odd number
Sj 6= 0. So it suffices to estimate E{Nn} for n even. Moreover, if n is even,

E{Nn} =
n/2∑
j=1

P{S2j = 0}.

Here is where combinatorics come in: Thanks to (1.1, Lecture 1), the probability that
S2j = 0 is equal to 2−2j times the number of paths of length 2j such that at time j the
path is at 0. Any such path π0, . . . , π2j hits 0 at time j if and only if it has gone to the
right exactly j times, and gone to the left exactly j times. There are

(
2j
j

)
-many ways for

choosing where these rights and lefts are, so

P{S2j = 0} = 2−2j

(
2j

j

)
.

This and the preceding display, together show

(2.2) E{Nn} =
n/2∑
j=1

2−2j

(
2j

j

)
.

But
(
2j
j

)
= (2j)!/(j!)2, and this can be estimated by

(2.3) Stirling’s Formula. As k →∞, k! ∼
√

2πkk+ 1
2 ek.

We use this to see that

(2.4)

E{Nn} ∼
n/2∑
j=1

2−2j

√
2π(2j)2j+ 1

2 e−2j(√
2πjj+ 1

2 e−j
)2 =

n/2∑
j=1

1√
2π

2
1
2

j
1
2

=

√
1
π

n∑
j=1

1√
j

=
√

n · 1
n

n∑
j=1

1√
j/n

.

But 1
n

∑nT
j=1 f(j/n) →

∫ T

0
f(x) dx if f is continuous; in fact this is the Riemann-sum

approximation of the calculus of real functions. Apply this with f(x) := 1/
√

x to see that
(1/n)

∑n
j=1 1/

√
j/n ∼

√
n ·

∫ 1/2

0
1/
√

x dx =
√

2n. Together with (2.4), this completes our
asymptotic evaluation of E{Nn}. ♣

§3. THE REFLECTION PRINCIPLE
Here is another application of the combinatorial way of thinking. This is a deep result

from the 1887 work of D. André:
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(3.1) The Reflection Principle. For any λ, n = 1, 2, . . .,

P

{
max

1≤j≤n
Sj ≥ λ

}
= 2P{Sn ≥ λ}.

Proof: The combinatorial representation of the simple walk (1.1, Lecture 1) tells us that
the above is equivalent to showing that

(3.2)
# {paths that go over λ before time n}

= 2×# {paths that are go over λ at time n} .

There are two types of paths that go over λ before time n: The first are those that
are over λ at time n, i.e., those paths for which πn ≥ λ (Type 1). The second (Type 2)
are those that go over λ some time before time n and then go below it so that at time n,
πn < λ. If you think about it for a moment, you will see that (3.2) is really stating that
the number of paths of Type 2 is equal to the number of paths of Type 1. But this is clear
from a picture; for example, see the picture at

http://www.math.utah.edu/~davar/REU-2002/notes/lec2.html.

Namely, any path of Type 2, can be reflected about the line y = λ at the first time it
hits λ. This gives a paths of Type 1. Conversely, any paths of Type 1 can be reflected to
give a path of Type 2. This shows that there are as many paths of each type, and we are
done. ♣

§4. APPENDIX: STIRLING’S FORMULA
It would be a shame for you not to see why Stirling’s formula (2.3 above) is true; so

I have added this section to explain it, although we did not discuss this section’s material
in our meeting.

Consider ln(k!) =
∑k

i=2 ln(i). By the integral test of calculus,∫ k

1

ln(x) dx ≤ ln(k!) ≤
∫ k+1

1

ln(x) dx.

But
∫ T

1
ln(x) dx = T ln(T )− 1. Therefore,

(4.1) k ln(k)− 1 ≤ ln(k!) ≤ (k + 1) ln(k + 1)− 1.

Now, recall Taylor’s expansions for ln(1 + y):

(4.2) ln(1 + y) = 1 + y − y2

2
+ · · · .

We don’t apply this to ln(k + 1) but rather note that ln(k + 1) = ln(k) + ln((k + 1)/k)) =
ln(k) + ln(1 + 1

k
). Apply (4.2) with y = 1

k
to deduce that

ln(k + 1) = ln(k) +
1
k
− 1

2k2
+ · · · .
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Put this back in to (4.1) to get

k ln(k) ≤ ln(k!) ≤ (k + 1)
[
ln(k) +

1
k
− 1

2k2
+ · · ·

]
≤ (k + 1)

[
ln(k) +

1
k

]
= k ln(k) + ln(k) + 1 +

1
k

.

Since the exponential of k ln k is kk, we can exponentiate the above inequalities to obtain

kk ≤ k! ≤ kk+1 × e1+ 1
k ∼ ekk+1.

Stirling’s formula is a much sharper version of these bounds. (For instance note that both
sides are off by k

1
2 to the leading order.)
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LECTURE 3: THE SIMPLE WALK IN HIGH DIMENSIONS

Let us continue our discussion on the simple walks to higher dimensions. To do so, it
helps to introduce a more abstract walk first (and briefly).

§1. THE SIMPLE WALK ON A GRAPH
(1.1) Graphs. A graph is a collection of points (or vertices) and a set of neighboring
relations (edges) between these vertices. An example of a graph is Z1—the one-dimensional
integer lattice—which can be thought of as a graph: The vertices are 0,±1,±2, . . . and
there is an edge between two vertices a and b if and only if |a− b| = 1. In particular, every
vertex has two neighbors.

An obvious generalization to this is Zd, which is the d-dimensional integer lattice.
This can be thought of as a graph with vertices of type (z1, . . . , zd) where the zi’s are
integers, and there is an edge between z = (z1, . . . , zd) and w = (w1, . . . , wd) if and only
if

∑d
i=1 |wi − zi| = 1 (check this!) So every vertex has (2d) neigbors on this graph. (Can

you compute this from the formal definition that I have written?)
A third example of an interesting graph is a binary tree. Here, you start with one

vertex; it then branches into two; each of these branches into two, and so on. Check that
at the nth level of this construction, there are 2n vertices. The edges are the natural
ones: Two vertices are neighbors (i.e., have an edge in common) if and only if one of them
branched off into the other. You should check that evey vertex except for the first one (the
root) has three neighbors, whereas the root has two neighbors.

As a fourth and final example, consider the complete graph on n vertices. Here, the
graph is made up of a finite number (n) of vertices, and everyone is the neighbor of everyone
else.

(1.2) The Simple Walk. The simple walk on a graph is the random process that starts
someplace in the graph (call it the origin if you want), and then moves to one of the nearest
neighboring vertices with equal probability. (Warning: This makes sense only if the graph
has no vertices with infinitely many neighbors, of course.) And the walk proceeds this way,
everytime going to a nearestneighbor independently of all his/her other moves, and always,
all neighbors are equally likely.

§2. THE SIMPLE WALK ON Z2

Returning to S1, S2, . . . being the simple random walk on the planar integer lattice Z2,
we ask, “how many times is the walk expected to return to its origin?” We have already
seen in (2.1, Lecture 2) that the one-dimensional walk returns to the origin about

√
n-times

in the first n steps, as n →∞. One should expect fewer returns for the planar walk, since
there is “more space.” Here is the precise result.

(2.1) Expected Number of Returns. If Nn denotes the number of times the simple
walk returns to the original before time n, then for n even,

E{Nn} =
n/2∑
j=1

4−2j

(
2j

j

)2

.
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In particular, for some constant c, E{Nn} ∼ c log(n).

A Semi-Proof: I gave a geometric proof of this in the lecture; the idea was that if you
rotate the xy-plane, you rotate the simple walk Sn on to the simple walk S̃n which is a
simple walk on the lattice in which the neighbors of the origin (0, 0) are the 4 points,(

1√
2
,

1√
2

)
,

(
− 1√

2
,

1√
2

)
,

(
1√
2
,− 1√

2

)
,

(
− 1√

2
,− 1√

2

)
.

Since we have only turned the plane, Sn = 0 if and only if S̃n = 0, so these two events have
the same probability, but P{S̃n = 0} ∼ c/

√
n (cf. the Stirling-formula approximation

in (2.4, Lecture 2)). So, P{S̃n = 0} ∼ C2/n. On the other hand, just as in the one-
dimensional case, E{Nn} =

∑n
j=1 P{Sj = 0}, so that E{Nn} ∼

∑n
j=1 C2/j. Let us see

how this sum behaves:

E{Nn} ∼ C2
n∑

j=1

1
j

= C2 1
n

n∑
j=1

1
(j/n)

∼ C2

∫ 1

1/n

ln(x) dx,

by a Riemann-Sum approximation. (How did the lower limit of the integral become (1/n)?)
As n →∞, this behaves like c log(n)—check!

When done carefully, as we did in the lecture, the exact calculation follows also. ♣

§3. THE SIMPLE WALK ON Zd, d ≥ 3
In higher dimensions the rotation trick fails, but our intuition that the coordinates

of Sn are almost independent simple walks is in a sense correct and can be made precise.
This leads to P{Sn = 0} ∼ (C/

√
n)d = cn−d/2. On the other hand, since d ≥ 3, this sums

and we have

(3.1) The Simple Walk in d ≥ 3 is transient. We have E{N∞} < +∞. Therefore,
the expected number of times to hit any point is finite. Therefore, after a finite (but
random) number of steps, Sn will leave any finite neighborhood of the origin, and this is
the property that the word “transient” is referring to.

§4. THE SELF-AVOIDING WALK Certain models of polymer chemistry lead to the
self–avoiding walk, which is defined as follows: First consider all paths of length n in your
favorite infinite lattice, say Zd. On the latter, there are (2d)n such paths, but many of
them self-intersect, i.e., there are distinct i, j ≤ n such that πi = πj . Let χn denote the
total number of self-avoiding paths of length n, and from these χn self-avoiding paths,
choose one at random. This is the self-avoiding walk of length n.
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(4.1) Bounds on χn. I claim that for every n, dn ≤ χn ≤ (2d)n.

Actually much better bounds are possible (say when d = 2), but this is good enough.

Proof: To get the upper bound of (2d)n note that every self-avoiding path is a path, and
so χn ≤ the number of all paths of length n, which is (2d)n. The lower bound is not much
more difficult. When d = 2, note that every path that only goes “up” or to the “right”
is self-avoiding. There are clearly 2n such paths. Note that paths of this type (i.e., the
“up-right” paths) are those that move in the direction of either vector (1, 0) or (0, 1).

When d = 3, the analogue of “up-right” paths are those that move in the direction of
(1, 0, 0), (0, 1, 0), (0, 0, 1). There are 3n such paths. In general, only choose the directions
that keep you going “up” in the positive quadrant, and note that these paths are (i)
self-avoiding; and (ii) there are dn many of them. ♣
(4.2) The Connectivity Constant C(d). There exists a constant d ≤ C(d) ≤ 2d, such
that

lim
n→∞

χn

n
= C(d).

This C(d) is called the connectivity constant.

(4.3) Remarks.
a. Such a result holds on many infinite graphs that are “self-similar.”
b. In rough terms, the above states that χn behaves (roughly again!) like (C(d))n for

large value of n.

Proof: Note that on every self-avoiding path of length n+m, certainly the first n steps are
self-avoiding, and the next m steps are also self-avoiding. Therefore,

χn+m ≤ χn · χm.

In words, the sequence χ1, χ2, . . . is submultiplicative. This is equivalent to the subadditivity
of log(χn)’s, i.e.,

log(χn+m) ≤ log(χn) + log(χm).

Therefore, by the subbadditivity lemma below, log(χn)/n has a limit. Note that this limit
is between d and (2d) by (4.1). ♣
(4.4) The Subadditivity Lemma. Any sequence a1, a2, . . . that is subadditive (i.e.,
an+m ≤ an + am) satisfies

lim
k→∞

ak

k
= min

n≥1

(an

n

)
.

In particular, the above limit is always ≤ a1 which is finite. However, this limit could
be −∞!

(4.5) Limits. I will prove this shortly. However, we need to be careful when dealing with
limits, especially since the entire point of this exercise is to show that the limit exists. So
let us start with some preliminaries: For any sequence x1, x2, . . .

lim sup
k→∞

xk := min
n≥1

max
j≥n

xj , and lim inf
k→∞

xk := max
n≥1

min
j≥n

xj .
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In other words, the lim sup is the largest possible accumulation point of the xj ’s and the
lim inf is the smallest. It should be obvious that for any sequence x1, x2 . . ., we always
have lim infj xj ≤ lim supj xj . When the two are equal, this value is the limit limj xj , and
this is the only case in which the limit exists.

Exercise 1. For our first example, consider the sequence xj := 1/j (j =
1, 2 · · ·). Then you should check that lim infj→∞ xj = lim supj→∞ = 0.
More generally, check that for any sequence x1, x2, . . . , limj→∞ xj exists
if and only if lim infj→∞ xj = lim supj→∞ xj .

Exercise 2. Show that the sequence xj := (−1)j/j (j = 1, 2, . . .) has no
limit. Do this by explicitly computing lim infj xj and lim supj xj .

Exercise 3. A point a is defined to be an accumulation point for the
sequence x1, x2, . . . if there exists a subsequence n(k) → ∞, such that
xn(k) → a. Show that lim supj xj and lim infj xj are always accumula-
tion points of (xj).

Exercise 4. Show that the sequence of Exercise 2 only has 2 accumu-
lation points. Construct a sequence x1, x2, . . . that has k accumulation
points for any predescribed integer k. Can you construct a sequence
x1, x2, . . . that has infinitely many accumulation points?

Now we are ready for

(4.6) Proof of (4.4). Since ak/k ≥ minn(an/n) for any k, it follows that

lim inf
k→∞

ak

k
≥ min

n

(an

n

)
.

It suffices to show that lim supk→∞(ak/k) ≤ minn(an/n). (For then, the lim sup and the
lim inf agree.) We do this in a few easy stages: Thanks to subbadditivity, ak ≤ ak−1 + a1.
But the same inequality shows that ak−1 ≤ ak−2 + a1, so that by iterating this we get

ak ≤ ak−1 + a1

≤ ak−2 + a1 + a1 = ak−2 + 2a1

≤ ak−3 + 3a1

...
≤ ka1.

Therefore, lim supk(ak/k) ≤ a1. Next, we show that this lim sup is also ≤ (a2/2). “By
induction,” this argument boosts itself up to show that for any n, lim supk(ak/k) ≤ (an/n),
which is what we want to show but in disguise.

To finish, I will show that

(4.7) lim sup
k→∞

ak

k
≤ a2

2
.
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I will then leave the “induction” part up to you as a nice exercise.
By subbaditivity, for all k > 2, ak ≤ ak−2 +a2. Applying it again, subadditivity yields

ak ≤ ak−4 + 2a2 for all k > 4 and so on. In general, we see that for all k > 2j,

(4.8) ak ≤ ak−2j + ja2.

Now, if k is even, choose j = (k/2)− 1 to see that (a) k > 2j; and so (b) ak ≤ (k/2)a2.
If k is odd, choose j = (k − 1)/2 to see that (c) k > 2j; and so (d) ak ≤ a1 + k−1

2
a2. So

regardless of whether or not k is even, we always have

ak ≤
(

k

2

)
a2 + |a1|+ |a2|.

(why?) Divide by k and let k →∞ to deduce (4.7). ♣

(4.9) Exercise on the Connectivity Constant. Improve (4.1) by showing that in all
dimensions, χn ≤ (2d)·(2d−1)n−1. Conclude from this and from (4.2) the following slightly
better bound on the connectivity constant: d ≤ C(d) ≤ (2d− 1), e.g., 2 ≤ C(2) ≤ 3.
(Hint. For step 1, you have (2d) choices, but then you cannot go back to where you were.)
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LECTURE 4: OTHER RELATED MODELS

Having discussed some of the basics for simple walks, I will start talking about various
different related model, to help you choose a research topic as soon as possible.

§1. MORE ON THE SELF-AVOIDING WALK
Recall the self-avoiding walk from §4 of Lecture 3. A number of interesting questions

present themselves that you may wish to think about:

♠ Open Problem 1. One can show, by appealing to subadditivity
again, that the self-avoiding walk on any regular lattice L satisfies

lim
n→∞

log χn

n
= c(L),

exists, and c(L) is the connectivity constant of the lattice L. In
particular, c(Zd) is nothing but the constant C(d) of Lecture 3, §4.
Two possible starting points for your research along these lines:

♥ Find a numerical method for computing c(L) for some inter-
esting lattices L such as Z2, Z3, or the hexagonal lattice.

♥ Can you numerically verify the conjecture that for the honey-
comb lattice, the connectivity constant is

√√
2 + 2?

♠ Open Problem 2. It is conjectured that, quite generally, there ex-
ists a universal constant α such that on any lattice L ⊆ Zd, χn

grows like a constant times nα(c(L))n. The point is that α is sup-
posed to be independent of the choice of the lattice but can (and
ought to) depend on the ambient dimension d. Assuming this hy-
pothesis, can you find a numerical approximation for α when d = 2?
Physicists conjecture that when d = 2, α = 43

32 .
♥ For any x ∈ Rd, let |x|2 := x2

1 + · · ·+ x2
d denote the square

of the distance between x and the origin. If Xn denotes the
position of the randomly selected self-avoiding path of length
n in Zd, what is An := E{|Xn|2}? It is conjectured that An

should grow like a constant times nβ for some constant β. Can
you numerically estimate β? When d = 2, β is conjectured to
be 3

4 . This would suggest that self-avoiding walks grow faster
than “diffusions,” which is why this type of growth is called
“super-diffusive.” (Another phrase that refers to this property
is “anamolous diffusion.”)

♥ Can you find numerical ways to estimate E{|Xn|p} for some
other values of p > 2 as well? It is conjectured that E{|Xn|p}
should behave like the square of E{|Xn|p/2} as n →∞.
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§2. DIFFUSION-LIMITED AGGREGATION (DLA)
Diffusion-limited aggregation (or DLA) is a mathematical model devised by Witten

and Sanders to model crystal growth. The aim is to grow a random set in Zd, in successive
time-steps, in order to obtain a sequence of growing random sets A(0) ⊆ A(1) ⊆ · · ·.

To start with, set A(0) = {0} so this means that at “time” 0, the “crystal” is a point.
Then start a random walk from infinitely (or nearly) far away from A(0) and wait until this
random walk hits a neighbor of A(0). This defines the crystal at time 1; namely, let A(1)
be the set comprised of the origin together with this last value of the stopped random walk.
Having created A(n), create A(n+1) by, once again, starting an independent random walk
infinitely far awar from A(n) and waiting until it hits a neighbor of A(n). Add that point
to A(n) to create A(n + 1) and so on.

Although there are many predictions and conjectures, very few facts are rigorously
known to be true. Here are some suggestions for interesting problems that you can try
to learn about by simulation analysis. You may be able to come up with others. (Don’t
forget library and web research for further gaining inspiration and motivation.)

♠ Open Problem 1. One of the big open problems in this area is to
decide whether or not A(n) grows by growing long spindly arms.
(The conjecture is that it does; this should make physical sense to
you.) Can you decide if this is so? To what extent does the “shape”
of A(n) depend on the geometry of the lattice on which the random
walks are being run?

♠ Open Problem 2. Since the notion of “shape” is not usually easy to
grasp, one can ask simpler questions that are still quite interesting.
For instance, how long are the arms of the DLA? (This is the title
of a 1987 paper of Harry Kesten by the way.) In 1987, H. Kesten
proved that for DLA on Zd, if rn := max{|x| : x ∈ A(n)}, then with
probability one, rn grows more slowly than n2/3 if d = 2 and more
slowly than n2/d if d = 3. While these results have been improved
by the subsequent works of H. Kesten as well as those of G. Lawler,
the known facts are very far from what is expected to be the true
growth rate of A(n). Can you decide what this rate is? Let me be
more concrete. Suppose rn grows like a constant times nβ for some
exponent β. Can you find a simulation prediction for β?

§3. INTERNAL DIFFUSION-LIMITE AGGREGATION (IDLA)
In 1991, Diaconis and Fulton formulated a means by which subsets of certain com-

mutative rings could be multiplied together. This uses a random process that is (like) a
random walk on that commutative ring. When the said ring is Zd, their “random walk”
becomes the following random process known as the internal diffusion-limit aggregation
(IDLA for short):

Let A(0) = {0}; having defined A(0), . . . , A(n), we now construct A(n+1) by running
a random walk, independently of all else, until the random walk hits a point that is not in
A(n). When that happens, stop the walk and add the newly-visited point to A(n) thereby
creating A(n + 1).
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This is a simpler process than the DLA, but it is far from being a simple object. Here
is a fact that was shown to be true by M. Bramson, D. Griffeath, and G. Lawler (1992):

(3.1) Asymptotic Shape of the IDLA. Let Bd denote the ball of radius 1 in Zd, and
let ωd denote its volume (e.g., ω1 = 2 and ω2 = π.) Then, as n → ∞, the following
happens with probability one:

(3.2)
(ωd

n

) 1
d

A(n) ⇒ Bd,

where by ⇒ I mean that for any ε > 0, the left-hand side is eventually contained in the
ε-enlargement of Bd (i.e., ball of radius (1 + ε) for any ε), and eventually contains the
ε-reduction of Bd (i.e., the ball of radius (1− ε)).

In other words, for large values of n (i.e., in large time), the IDLA set A(n) looks
more and more like the centered ball of radius (n/ωd)1/d. For instance, when d = 2, this
is the centered ball of radius

√
n/π.

♠ Open Problem 1. What happens in other lattices? For instance,
what about the hexagonal or the triangular lattice? What if the
lattice is inhomogeneous? (This is due to Matthew Taylor.)

♠ Open Problem 2. Continuing with the above, what if you have a
lattice that is random? For instance, suppose you run a random
walk on the infinite cluster of an independent percolation process
(see §5 below). Then what behavior should you expect to see?

♠ Open Problem 3. One may think that A(n) really looks filled in
and like a ball. However, in her Ph. D. thesis, D. Eberz has proven
that with probability one, there exist infinitely many n’s such that
A(n) “has holes” in it. A good research problem would be to explore
the fluctuations; i.e., to explore how different A(n) is from the ball.
As a concrete way to state this, consider the number of points that
are (i) in A(n) and not in (n/ωd)1/dBd; or are (ii) in (n/ωd)1/dBd

but not in A(n). How many of them are there for large values of n?
To be even more concrete, hypothesize that this number grows like
a constant times nγ . Can you estimate γ by simulation analysis?

§4. BOND PERCOLATION
For any number 0 < p < 1, and for any lattice L, we can define bond percolation

on L as follows: Each edge of L is open with probability p and closed with probability
(1− p), and all edges are open/closed independently from one another. We can then say
that percolation occurs if with positive probability, one can find some random open path
that connects a given point of L (call it the origin) to infinity (i.e., if there is an infinite
self-avoiding path emenating from the origin, all of whose edges are open.)
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Let θ(p) denote the probability of percolation on a given lattice. That is, θ(p) is the
probability that there is an infinite open connected path starting from the origin.

(4.1) The Critical Probability. There exists a critical probability pc such that whenever
p > pc, θ(p) > 0, but when p < pc, θ(p) = 0.

This follows from showing that θ(p) increases as p goes up; although it is true, this is
not a trivial fact. Here is how you prove it:

Proof: On each edge e in the lattice, set down independent edge-weights Xe such that
P{Xe ≤ x} = x for all x ∈ [0, 1]. In other words, Xe is uniformly distributed on [0, 1].
Now every time Xe ≤ p, call that edge open, otherwise it is closed. This procedure produces
the percolation process with parameter p simultaneously for all p, since P{e is open } =
P{Xe ≤ p} = p. Moreover, if Xe ≤ p, then for any p′ > p, Xe ≤ p′ also. Therefore,
the percolation cluster for p is contained in the percolation cluster for p′. In particular,
if there is percolation at level p, there is certainly percolation at level p′. This is another
way to state that θ(p) ≤ θ(p′). To finish, define pc to be the smallest value of p such that
θ(p) > 0. This is well-define since θ is increasing (draw a picture!) ♣
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LECTURE 5: THE CRITICAL PERCOLATION PROBABILITY
FOR BOND PERCOLATION

Recall that, in percolation, each edge in Zd is open or closed with probability p or
(1 − p), and the status of all edges are independent from one another. In (4.1, Lecture
4) we showed that there exists a critical probability pc (sometimes written as pc(Zd) to
emphasize the lattice in question), such that for all p > pc, there is percolation (i.e., with
positive probability, there exists an infinite connected open path from the origin), and
for p < pc, there is no percolation. However, this statement is completely vacuous if the
numercial value of pc were trivial in the sense that pc were 0 or 1. In this lecture, we will
show that this is not the case. In fact, we will show that in all dimensions d ≥ 2,

(0.1)
1

C(d)
≤ pc(Zd) ≤ 1− 1

C(d)
,

where C(d) is the connectivity constant of Zd; see (§4.2, lecture 3).

(0.2) Concrete Bounds on pc(Zd). Since that d ≤ C(d) ≤ (2d) (§4.2, lecture 3), then
it follows from (0.1) above that 1

2d ≤ pc(Zd) ≤ 1− 1
2d . This can be easily improved upon,

since by §4.9 of lecture 4, C(d) ≤ (2d−1), so that 1
2d−1

≤ pc(Zd) ≤ 1− 1
2d−1

. in particular,
pc(Zd) is strictly between 0 and 1, which is the desired claim. ♣

(0.3) The Planar Case. The planar case deserves special mention: The previous bounds
show that pc(Z2) is between 1

3
and 2

3
. In fact, it has been shown that

a. pc(Z2) = 1
2 (Harris and Kesten);

b. If p = pc(Z2), then there is no percolation (Bezuidenhout and Grimmett). ♣

§1. THE LOWER BOUND IN (0.1).
We first verify the lower bound of (0.1) on pc. Note that showing pc ≥ 1

C(d) amounts
to showing that whenever p < 1

C(d)
, then P{percolation} = 0.

First note that the chance that any self-avoiding path π of length n is open is pn.
Therefore,

(1.1)
E {# of self-avoiding paths of length n} = E

[∑
π

1{π is open}
]

=
∑

π

P {π is open} =
∑

π

pn,

where
∑

π denotes the summation over all self-avoiding paths of length n, and 1{· · ·} :=
1{···} is the indicator of {· · ·}. Since there are χn many self-avoiding paths of length n,

(1.2) E {# of self-avoiding paths of length n} ≤ χnpn.
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But χn ≈ {C(d)}n, where

(1.3) an ≈ bn mean lim
n→∞

log an

log bn
= 1.

This means that as soon as p < 1
C(d) , then

(1.4) E{# of self-avoiding paths of length n} → 0, (n →∞).

(Why? Be sure that you understand this!) But for any n,

(1.5)
P{percolation} ≤ P {# of self-avoiding paths of length n ≥ 1}

≤ E{# of self-avoiding paths of length n},

thanks to Markov’s inequality (§4.1, lecture 2). Since P{percolation} is independent of n,
(1.3) shows that it must be zero as long as p < 1

C(d) . This shows that pc ≥ C(d), which is
the desired result. ♣

§2. THE UPPER BOUND IN (0.1).
Now we want to prove the second inequality in (0.1). That is, we wish to show that

if p > 1− 1
C(d)

, then P{percolation} > 0. This is trickier to do, since we have to produce
an open path or an algorithm for producing such a path, and this is a tall order. Instead,
let us prove the (logically equivalent) converse to the bound that we are trying to prove.
Namely, we show that if P{percolation} = 0, then p ≤ 1 − 1

C(d)
. For this, we need to

briefly study a notion of duality for percolation, and one for graphs. From now on, we will
only work with Z2; once you understand this case, you can extend the argument to get
the upper bound in (0.1) for any d ≥ 2.

(2.1) The Dual Lattice. Briefly speaking, the dual lattice Z̃2 of Z2 is the lattice

(2.2) Z̃2 := Z2 +
(

1
2
,
1
2

)
.

At this point, some of you may (and should) be asking yourselves, “What does it mean to
sum a set and a point?” In general, A + x is short-hand for the set {y + x; y ∈ A}. That
is, A + x is A shifted by x. Consequently, the dual lattice Z̃2 is the lattice Z2 shifted by
(0.5, 0.5). Pictorially speaking, the dual lattice Z̃2 looks just like Z2, except that its origin
is the point (0.5, 0.5) instead of (0, 0); i.e., its origin has been shifted by (0.5, 0.5). You
should plot Z̃2 to see what is going on here.

(2.3) Dual Percolation. Each edge e in Z2 intersects a unique edge in Z̃2 halfway in the
middle. We can call this latter edge the dual edge to e. Whenever an edge in Z2 is open,
its dual is declared close, and conversely, if an edge in Z2 is closed, we declare its dual edge

20



in Z̃2 open. Clearly, this process creates a percolation process on the dual lattice Z̃2, but
the edge-probabilities are now (1− p) instead of p. Now if there is no percolation on Z2,
this means that on Z̃2, there must exist an open “circuit” surrounding the origin. For a
picture of this, see

http://www.math.utah.edu/~davar/REU-2002/notes/lec5.html

The probability that any given circuit, surrounding the origin, of length n is dual-open
is (1− p)n. So,

(2.4) E
[
# of open circuits in Z̃2 of length n

]
≤ Cn(1− p)n,

where Cn denotes the number of circuits—in Z̃2—of length n that surround the origin.
Thus, we have shown that

(2.5) P
{
no perocolation in Z2

}
≤ Cn(1− p)n.

We want to show that is p is large enough, the above goes to zero as n → ∞. To do so,
we need a bound for Cn.

(2.6) Bounding Cn. It is easier to count the number of circuits of length n in Z2

(not the dual) that surround the origin. This number is also Cn (why?). But for a
path π := π0, . . . , πn to be a circuit of length n about (0, 0), it must be that any (n −
1) steps in π form a self-avoiding path, and that π must go through one of the points
(1, 0), (1,±1), (1,±2), . . . , (1,±bn

2 c). (There are at most (n+1) of these points.) Therefore,
Cn ≤ (n + 1)χn−1 (why?) Recalling (1.3) above, and since χn−1 ≈ {C(d)}n−1, this and
(2.5) show that whenever p > 1 − 1

C(d) , then there can be no percolation, which is the
desired result. ♣
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LECTURE 6: STARTING SIMULATION

§1. THE ABC’S OF RANDOM NUMBER GENERATION

(1.1) Computing Background. I will start the lectures on simulation by first assuming
that you have access to (i) a language (such as C or better still C++); or (ii) an environment
(such as Matlab.) If you do not know how to use any programming, you need to get a
crash-course, and your T.A.’s (in particular, Sarah and Robert) will help you along if you
seek their help. At this point, you should make sure that you (i) have a computer account;
and (ii) know how to log in, check mail, and run a program that you know how to run.

(1.2) Generating a Uniformly Distributed Random variable. All of simulation
starts with the question, “How do I choose a random number uniformly between 0 and 1?”
This is an intricate question, and you will have a detailed lecture on this topic from Dr.
Nelson Beebe later this week or the next. These days, any self-respecting programming
language or environment has a routine for this task (typically something like rand, rnd,
or some other variant therefrom). Today, we will use such random number generators to
generate a few other random variables of interest; we will also apply these methods to
simulate random walks.

(1.3) Generating a ±1 Random Variable. Our first task is to generate a random
variable that takes the values ±1 with probability 1

2 each. Obviously, we need to do this
in order to simulate the one-dimensional simple walk.

The key observation here is that if U is uniformly distributed on [0, 1], then it follows
that P{U ≤ 1

2
} = 1

2
. So, if we defined

(1.4) X :=
{

+1, if U ≤ 1
2
,

−1, if U > 1
2 ,

then P{X = +1} = P{U ≤ 1
2} = 1

2 and P{X = −1} = P{U ≥ 1
2} = 1

2 . That is, we have
found a way to generate a random variable X that is ±1 with probability 1

2 each. This
leads to the following.

(1.5) Algorithm for Generating ±1-Random Variables

1. Generate U uniformly on [0, 1]
2. If U ≤ 1

2, let X := +1, else let X := −1

(1.6) Exercises. Try the following:

(a) Write a program that generates 100 independent random variables,
each of which is ±1 with probability 1

2
each.

(b) Count how many of your generated variables are ±1, and justify the
statement that, “with high probability, about half of the generated
variables should be ±1.”

(c) Come up with another way to construct ±1 random variables based
on uniforms; a variant of (1.5) is acceptable.
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(1.7) The Inverse Transform Method. We now want to generate other kinds of
“discrete random variables,” and we will do so by elaborating on the method of (1.5).
Here is the algorithm for generating a random variable X such that P{X = xj} = pj

j = 0, 1, . . . for any predescribed set of numbers x0, x1, . . ., and probabilities p0, p1, . . .. Of
course, the latter means that p0, p1, . . .are numbers with values in between 0 and 1, such
that p0 + p1 + · · · = 1.

(1.8) Algorithm for Generating Discrete Random Variables.

1. Generate U uniformly on [0, 1]
2. Define

X :=


x0, if U < p0,
x1, if p0 ≤ U < p0 + p1,
x2, if p0 + p1 ≤ U < p0 + p1 + p2,
...

...

(1.9) Exercise. Prove that the probability that the outcome of the above simulation is
xj is indeed pj . By specifying x0, x1, . . . and p0, p1, . . . carefully, show that this “inverse
transform method” generalizes Algorithm (1.5).

(1.10) Exercise. In this exercise, we perform numerical integration using what is some-
times called Monte Carlo simulations.

(a) (Generating random vectors) Suppose that U1, . . . , Ud are indepen-
dent random variables, all uniformly distributed on [0, 1], and con-
sider the random vector U = (U1, . . . , Ud). Prove that for any d-
dimesional hypercube A ⊆ [0, 1]d, P{U ∈ A} = the volume of
A. In other words, show that U is uniformly distributed on the
d-dimensional hypercube [0, 1]d.

(b) Let U1, . . . ,Un be n independent random vectors, all distributed
uniformly on the d-dimensional hypercube [0, 1]d. Show that for
any integrable function f with d variables, the following holds with
probability one:

(1.11) lim
n→∞

1
n

n∑
`=1

f(U`) =
∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xd) dx1 · · · dxd.

(c) Use this to find a numerical approximation to the following inte-
grals:

i.
∫ 1

0
e−x2

dx.
ii.

∫ 1

0

∫ 1

0
yx dx dy.
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§2. SHORT-CUTS: GENERATING BINOMIALS

(2.1) The Binomial Distribution. A random variable is said to have the binomial
distribution with parameters n and p if

(2.2) P{X = j} =
(

n

j

)
pj(1− p)n−j , j = 0, 1, . . . , n.

Here n is a positive integer, and p is a real number between 0 and 1.

(2.3) Example. For example, suppose n independent success/failure trials are performed;
in each trial, P{success} = p. Then, if we let X denote the total number of successes, this
is a random variable whose distribution is binomial with parameters n and p. ♣
(2.4) Example. Suppose ξ1, . . . , ξn are independent with P{ξ = 1} = p and P{ξ = 0} =
1− p. Then, X := ξ1 + · · ·+ ξn is binomial.

Proof: Let ξi = 1 if the ith trial succeeds and ξi = 0 otherwise. Then X is the total number
of successes in n independent success/failure trials where in each trial, P{success} = p. ♣
(2.5) Example. If Sn denotes the simple walk on the integers, then Sn = X1 + · · ·+ Xn,
where the X ’s are independent and every one of the, equals ±1 with probability 1

2 each.
On the other hand, Yi := 1

2
(Xi + 1) is also an independent sequence and equals ±1 with

probability 1
2 each (why?) Since Xi = 2Yi − 1,

(2.6) Sn = 2
n∑

i=1

Yi − n.

Therefore, the distribution of the simple walk at a fixed time n is the same as that of
2× binomial(n, p)− n.

(2.7) A Short-Cut. Suppose we were to generate a binomial(n, p) random variable. A
natural way to do this is the inverse transform method of (1.7) and (1.8). Here, x0 =
0, x1 = 1, . . . , xn = n, and pj is the expression in (2.2). The key here is the following short
cut formula that allows us to find pj+1 from pj without too much difficulty:

(2.8)

pj+1 =
(

n

j + 1

)
pj+1(1− p)n−j−1

=
p

p− 1
× n!

(j + 1)!× (n− j − 1)!
× pj(1− p)n−j

=
p

p− 1
× n− j

j + 1
×

(
n

j

)
pj(1− p)n−j

=
p

p− 1
× n− j

j + 1
× pj .

So we can use this to get an algorithm for quickly generating binomials.
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(2.9) Algorithm for Generating Binomials.

1. Generate U uniformly on [0, 1].
2. Let Prob := (1− p)n and Sum := Prob.
3. For j = 0, . . . , n, do:

i. If U < Sum, then let X = j and stop.
ii. Else, define

Prob :=
Prob

1− Prob
× n− j

j + 1
× Prob, and Sum := Prob + Sum.

You should check that this really generates a binomial. ♣
(2.10) Algorithm for Generating the One-Dimensional Simple Walk. Check that
the following generates and plots a 1− d simple walk.

1. (Initialization) Set W := 0 and plot (0, 0).
2. For j = 0, . . . , n, do:

i. Generate X = ±1 with prob. 1
2
each.

(See (1.5) for this subroutine.)
ii. Let W := W + X and plot (j, W).

If you are using a nice plotting routine like the one in Matlab, try filling in between
the points to see the path of the walk.

(2.11) Exercise. Generate 2-dimensional simple walks that run for (a) n = 100 time
units; (b) n = 1000 time units.

25



LECTURE 7: FRACTAL PERCOLATION

§1. FRACTAL PERCOLATION

(1.1) Mandelbrot’s Fractal Percolation. Consider the square S := [0, 1]× [0, 1]. That
is, S is the set of all points (x, y) such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. We will divide S
into four equal-sized squares,

(1.2)
S1 :=

[
0,

1
2

]
×

[
0,

1
2

]
, S2 :=

[
0,

1
2

]
×

[
1
2
, 1

]
,

S3 :=
[
1
2
, 1

]
×

[
0,

1
2

]
, S4 :=

[
1
2
, 1

]
×

[
1
2
, 1

]
,

For each square, you toss an independent coin; with probability p ∈ (0, 1), you keep that
square, and with probability (1 − p) you jettison it. So now you have a random number
of kept squares (some random number between 0 and 4.) Split each into four equal-
sized squares, and toss an independent p-coin for each to see if you want to keep, and
repeat. Fact: If p is sufficiently large, and if you continue ad infinitum, then with positive
probability you end up with a nonempty random set that Mandelbrot calls a “random
curdle,” and these days is referred to as fractal percolation.

(1.3) Hard Question. Use simulation to find the critical probability pc past which you
can get fractal percolation. ♣

§2. FRACTALS AND MINKOWSKI (BOX) DIMENSION

(2.1) The Tertiary Cantor Set. Georg Cantor invented the following strange set that
is nowhere dense, has length zero, and yet is uncountable. It is the archetype of what is
nowadays is called a fractal.

Start with the interval I = [0, 1]; split it into three equal parts, and jettison the
middle-third to get two intervals I1 := [0, 1

3 ], and I2 := [ 23 , 1]. Take the remaining two
intervals, split them in threes, and jettison the middle-third interval, and repeat. After
the nth stage of this construction, you will get a set Cn that is made up of 2n intervals of
length 3−n. In particular, the length of Cn is (2/3)n, which goes to zero. It is not hard to
see that C := ∩nCn 6= ∅, although it has length zero. A little more work shows that it is
nowhere dense.

(2.2) The Minkowski Dimension. Note that in the nth stage of the construction of
the tertiary Cantor set of (2.1), we have in pricniple 3n intervals of length 3−n, but we
only keep 2n of them. Therefore, the total number of intervals of length 3−n that cover
the tertiary Cantor set should be 2n. In general, let Nk denote the total number of the
intervals (in higher dimensions, cubes) of length k−1 that cover the portion of your fractal
in [0, 1], and define the Minkowski or box dimension of your fractal to be the number α
such that Nk ≈ kα, if such a number exists. (Recall that ak ≈ bk means that as k → ∞,
log(ak)÷ log(bk) → 1.)
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(2.3) Example. Consider the tertiary Cantor set of (2.1), and check that N3−n = 2n. For-
mally let k = 3n and convince yourself that as k →∞, Nk ≈ kα where α = log(2)/ log(3).
That is, the tertiary Cantor set is a “fractal” of “fractional dimension” log(2)/ log(3)
which is about equal to 0.63. ♣

(2.4) Projects for Extensions. You can try constructing other Cantor-type fractals by
either (i) splitting into intervals of other sizes than 1

3
; (ii) retaining/jettisoning intervals

by a different algorithm; or (iii) constructing higher-dimensional fractals. For instance, try
starting with the square [0, 1]× [0, 1]; split it into 9 equal-sized squares; retain all but the
middle one, and repeat. ♣
(2.5) Projects for Fractal Percolation. Now go back to fractal percolation, and ask:
♦ What is the critical probability pc, such that whenever p > pc, you can end up with

a nonempty random fractal, and when p < pc, the entire construction ends at some
random stage since everything has been jettisoned? The answer to this is known by
theoretical considerations.

♦ When p > pc, can you find the box dimension of the resulting random fractal? The
answer to this is known by theoretical considerations.

♦ When p > pc, can you estimate the probability that there exists a left-to-right path
on the resulting random fractal? The answer to this is unknown.

(2.6) Relation to Percolation on Trees. The act of splitting each square into four
equal-sized ones can be represented by a rooted tree in which each vertex splits into four
vertices in the next level of the tree. Now go through the edges of this tree, and with
probability p keep an edge, and with probability (1− p) discard it. Question: Is there an
infinite kept path starting from the root? You should make sure that you understand the
following assertion: This is exactly the same mathematical question as, “Is there fractal
percolation?”

(2.7) Relation to Branching Processes. Consider the following model for geneology
of a gene: You start with one “grandmother gene.” Upon death (or mutation or whatever
else is the case), this gene splits into a random number of “offspring,” where the offspring
distribution is: With probability p4 there are 4 offpsring; with probability

(
4
1

)
p3(1−p) there

are 3 offspring; with probability
(
4
2

)
p2(1 − p)2 there are 2 offspring; and with probability

(1 − p)4 there are no offpsring. How large should p be in order for this gene population
to survive forever? Make sure that you understand that this is the same mathematical
problem as the one in (2.6), which is itself the same as asking whether or not one has
fractal percolation.

27



LECTURE 8: BROWNIAN MOTION

§1. A LITTLE HISTORY

(1.1) Robert Brown (1828). In 1828, an English botanist by the name of Robert
Brown discovered that if you grains of pollen suspended in water, then each individual
grain seems to undergo a rather erratic movement. He also posed the problem of describing
this movement that has come to be known as ”molecular motion” or ”diffusion.” This work
was largely ignored by the scientific community for some time.

(1.2) Louis Bachelier (1900). Independently from Brown’s work, in his 1900 Ph.D.
thesis at the University of Paris, and under the guidance of the great French mathemati-
cian H. Poincaré, Louis Bachelier worked out a theory for the fluctuations of the stock
market that involved the development of a stochastic process that is now called “Brownian
motion.” [See L. Bachelier (1900). Théorie de la spéculation, Annales de l’Ecole Normale
Superiure, Ser. 3, 17, 21–86. See also the English translation: L. Bachelier (1964). The
Random Character of Stock Market Prices, P. H. Cootner editor, MIT Press, Cambridge.]
Unfortunately, Bachelier’s work went largely unnoticed for nearly a century, since his argu-
ments contained flaws nearly all of which are now known to be minor. However, amongst
the accomplishments of Bachelier’s thesis were his discovery of two deep and fundamental
facts about the Brownian motion: One, that it has a Markovian character (in words, given
the position at time t, you do not need the prior positions to predict or simulate the future
behavior of the process); and two, that it has the reflection property: If W (s) denotes
the position of the Brownian motion at time s, then the maximal displacement by time
t (i.e., maxs≤t W (s)) has the same distribution as the absolute displacement at time t
(i.e., |W (t)|). The latter has a simple distribution and this leads to Bachelier’s wonderful
calculation:

(1.3) P

{
max
0≤s≤t

W (s) ≤ λ

}
=

√
2
πt

∫ λ

0

e−x2/2t dx.

(1.4) Albert Einstein (1905). In 1905 Albert Einstein came to the problem of Brow-
nian motion independently (and unaware of) of Bachelier’s work; his motivation was to
answer Brown’s question by proposing a mathematical model for molecular motion. [See
A. Einstein (1956). Investigations on the theory of the Brownian movement, New York.]
In particular, he used the connections between the Brownian motion and the diffusion
equation to get the sharpest estimates of that time for the Avagadro’s number and hence
the diameter of a hydrogen atom. With hindsight, we now know that Bachelier went much
further in his analysis than Einstein. However, it is easier to describe Einstein’s prediction
for what the Brownian motion should be. Actually proving that such an object exists and
developing a calculus for it required a tremendous mathematical development to which I
will come shortly. However, let me mention in passing that a good number of physicists
continued Einstein’s analysis and applications of Brownian motion in physics; some of the
names that you should know about are Smoluchowski, Fokker and Planck, Uhlenbeck, and
many others.
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(1.5) Einstein’s Predicates. Einstein predicted that the one-dimensional Brownian
motion is a random function of time written as W (t) for “time” t ≥ 0, such that:
(a) At time 0, the random movement starts at the origin; i.e., W (0) = 0.
(b) At any given time t > 0, the position W (t) of the particle has the normal distribution

with mean 0 and variance t.
(c) If t > s > 0, then the displacement from time s to time t is independent of the past

until time s; i.e., W (t)−W (s) is independent of all the values W (r); r ≤ s.
(d) The displacement is time-homogeneous; i.e., the distribution of W (t) − W (s) is the

same as the distribution of W (t−s) which is in turn normal with mean 0 and variance
t− s.

(e) The random function W is continuous.

(1.6) Norbert Wiener (1923). In 1923, Norbert Wiener (a professor at MIT and a
child prodigy) proved the existence of Brownian motion and set down a firm mathematical
foundation for its further development and analysis. Wiener used the recently-developed
mathematics of É. Borel and H. Steinhaus (the subject is called measure theory), and
cleverly combined it with a nice idea from a different mathematical discpline (harmonic
analysis) to show the in fact the following random series converges with probability one to
an object that satisfies (nearly) all of Einstein’s predicates: For all 0 ≤ t ≤ 1,

(1.7) W (t) =
1√

π
2

tX0 +
1√
π

∞∑
j=1

[
sin(πjt)

j
Xj,

cos(πjt)
j

X−j

]
,

where X0, X±1, X±2, . . . are independent standard normal random variables. [See the last
two chapters of R. E. A. C. Paley and N. Wiener (1934). Fourier Transforms in the
Complex Plane, New York.]

(1.8) Paul Lévy (1939). Finally, the classical development of Brownian motion was
complete in a 1939 work of Paul Lévy who proved the following remarkable fact: If you
replace the normal distribution by any other distribution in Einstein’s predicate (cf. 1.5),
then either there is no stochastic process that satisfies the properties (a)–(d), or (e) fails
to hold! Lévy’s work was closely related to the concurrent and independent work of
A. I. Khintchine in Russia, and is nowadays called The Lévy–Khintchine Formula.

(1.9) Kiyosi Itô (1942/1946). The work of Paul Lévy started the modern age of random
processes, and at its center, the theory of Brownian motion. The modern literature on
this is truly vast. But all probabilists would (or should) agree that a center-piece of the
classical literature is the 1942/1946 work of K. Itô who derived a calculus—and thereby a
theory of stochastic differential equations—that is completely different from the ordinary
nonstochastic theory. This theory is nowadays at the very heart of the applications of
probability theory to mathematical finance. [See K. Itô (1942). On stochastic processes.
1. Japanese J. Math., 18, 261–301; K. Itô (1946). On a stochastic integral equation, Proc.
Jap. Aca., 22, 32–25.]

(1.10) Monroe Donsker (1951). For us, the final important step in the analysis of Brow-
nian motion was the 1951 work of Donsker who was a Professor of mathematics at The
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New York University. [See M. Donsker (1951). An invariance principle for certain proba-
bility limit theorems, Memoires of the American Math. Society, 6, and M. Donsker (1952).
Justififcation and extension of Doob’s heuristic approach to the Kolmogorov–Smirnov the-
orem, The Annals of Math. Stat., 23, 277–281.] Amongst other things, Donsker verified
a 1949 conjecture of the great American mathematician J. L. Doob by showing that once
you run them for a long time, all mean-zero variance-one random walks look like Brownian
motion! [The said conjecture appears in J. L. Doob (1949). Heuristic approach to the
Kolmogorov–Smirnov statistic, The Annals of Math. Stat., 20, 393–403].

§2. BROWNIAN MOTION

(2.1) Donsker’s Theorem. As I mentioned in (1.10), Donsker’s theorem states that once
you run them for a long time, all mean-zero variance-one random walks look like Brownian
motion. Here is a slightly more careful description: Let X1, X2, . . . denote independent,
identically distributed random variables with mean zero and variance one. The random
walk is then the random sequence Sn := X1 + · · · + Xn, and for all n large, the random
graph of S1/

√
n, S2/

√
n, . . . Sn/

√
n (linearly interpolate inbetween the values as Matlab

does automatically), is close to the graph of Brownian motion run until time one.

(2.2) Algorithm for Running a Brownian Motion W. Choose a large value of n
and a starting value x, and perform the following. It uses Donsker’s theorem above, and
wwill plot the path of a one-dimensional Brownian motion run until time 1.

− For i=1 to n;
◦ W(i) = x;

− end; % Initialize the Brownian motion to
have all values equal to the starting point x.

− Plot (0, W(1)) % This plots the starting point.
− For i=2 to n; % When i=1, W(i)=x already.

◦ Generate a random variable Z := ±1 with probability 1
2.

◦ Set W(i) = Z/
√
n + W(i− 1);

◦ Plot (i/n, W(i));
− end;

(2.3) Application: Bachelier’s Reflection Principle. Recall the reflection principle
of D. Andre from (3.1, Lecture 2): If Sn is the simple walk, then

(2.4) P

{
max

1≤k≤n
Sn ≥ λ

}
= 2P {Sn ≥ λ} .

But the same number of these simple-walk paths are over λ as they are under −λ. Thus,

(2.5) P

{
max

1≤k≤n
Sn ≥ λ

}
= P {|Sn| ≥ λ} .
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What this says is that the distribution of the maximum displacement of the walk is the
same as the distribution of the absolute displacement. Replace λ by

√
nλ, let n → ∞,

and appeal to Donsker’s theorem to deduce the following: If W denotes Brownian motion,
then for all λ > 0,

(2.6) P

{
max

0≤s≤1
W (s) ≥ λ

}
= P {|W (s)| ≥ λ} .

But the distribution of W (s) is a normal with mean zero and variance s. From this, one
readily obtains Bachelier’s reflection principle (cf. equation 1.3) with t = 1. The general
case t > 0 is handled similarly. ♣
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LECTURE 9: BROWNIAN MOTION AND DIFFUSION

§1. MONTE-CARLO SIMULATION

(1.1) The St.-Petersbourg Paradox. Let W denote Brownian motion, and for any
number λ > 0 (say λ = 1 for the sake of concreteness) define

(1.2) Tλ := min {s ≥ 0 : W (s) = λ} ,

which is the first time Brownian motion attains the level λ. For this random variable,
one has the property that P{Tλ < ∞} = 1, and yet E{Tλ} = +∞. That is, although
Brownian motion will eventually reach λ, it is never expected to! This is a variant of the
St.-Petersbourg paradox of gambling. That P{Tλ < +∞} = 1 is not hard to see on a
simulation. But how does one verify that E{Tλ} = +∞? One starts with a formula from
measure theory:

(1.3) E{Tλ} =
∫ ∞

0

P{Tλ > x} dx.

So if we could show that as x → ∞, P{Tλ > x} ∼ Cx−1/2 (say), it would follow that for
large n,

∫∞
n

P{Tλ > x} dx ∼ C
∫∞

n
x−1/2 dx = +∞. This is indeed the case:

(1.5) Theorem. For each λ > 0, there exists some uninteresting constant C such that as
x →∞, P{Tλ > x} ∼ Cx−1/2.

(1.6) Simulation Verification. How does one verify this theorem by simulation methods?
Note that P{Tλ > x} is an expectation and hence can be simulated by Monte–Carlo
simulation (cf. Lecture 6, Exercise 1.10). Indeed, P{Tλ > x} = E{1{Tλ>x}}. So, one can
Monte-Carlo-simulate this by generating a large number (N) of independent Brownian
motions W 1, . . . , WN , each until the first time they hit λ. Let T 1

λ , . . . , TN
λ denote their

respective hitting times to λ and note that T 1
λ , . . . , TN

λ are independent and identically
distributed. Thus, by Kolmogorov’s strong law of large numbers (Theorem 0.1, Lecture
2),

(1.7) lim
N→∞

1
N

N∑
`=1

1T `
λ

>x} = P{Tλ > x}.

In words, generate N independent Brownian motions and see how many of them take up
at least x units of time to reach λ. If N is large, then this should be close to P{Tλx}. Now
conjecture that for some α > 0, P{Tλ > x} ≈ x−α. If so, then log P{Tλ > n} ∼ −α log n
for large n, and this means that if you plot the log-plot of the function P{Tλ > x}, you
will see a constant function; the constant is −α and, thanks to Theorem (1.5), it should
be equal to −1

2 . ♣
(1.8) Random Walk Projects. Suppose S denotes the two-dimensional simple walk; fix
some nice set A ⊂ R2, and let TA := min{n ≥ 0 : Sn ∈ A} be the first time that you hit
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that set. For instance, A could be a single point {(1, 1)} (say), a curve, etc. Can you find
the extent to which the geometry of A affects the rate of decay of P{TA > x} as x →∞?
For instance, can you detect a discernable difference between the two cases A := {(1, 1)}
and A := the square {(x, y) : |x| = 1, |y| = 1}? (There is a huge difference.)

(1.9) Brownian Motion Projects. Continuing with our discussion of (1.8), we may ask,
“what if the set A changes with time?” The most interesting case is if A is replaced by√

nA. To be conrete, consider the example of (1.6) but replace λ by
√

xλ; let us also write
n for x to remind ourselves that it is an integer. So, to summarize: Let Sn := the simple
walk on Z, and more generally consider P{T√nλ > nx}, where Tm denotes the first time
the random walk hits m for any m. Then, by Donsker’s theorem (Theorem 2.1, Lecture
8),

(1.10) lim
n→∞P{T√nλ > nx} = P{Tλ > x},

and recall that Tλ is the first time Brownian motion hits λ. If instead of
√

nλ you write
nαλ for α 6= 1

2 , then nothing interesting happens. Either the probabilities are too small,
or they converge to positive constants.

§2. ITÔ DIFFUSIONS

(2.1) A Model in Discrete Time. Suppose that you want to model the random-walk-
like movement of a particle in space, but now the space is inhomogeneous, so that in
some parts, the walk moves rapidly, and in others very slowly. (Think of a random walk
in space that is in part filled with air and in part with oil.) We will restrict “space” to
one-dimensions since it is easier to imagine what is going on.

One way to proceed is to construct independent molecular fluctuations, X1, X2, . . . .
These are—as before—equal to ±1 with probability 1

2 each, and are independent random
variables. Our “diffusion” (or random walk in inhomogeneous media) will be denoted by
the process Y0.Y1, . . ., where Y0 is wherever the process starts (say at the origin.) So,
Y0 := 0, and having constructed Y0, . . . , Yk, define Yk+1 := Yk + a(Yk)Xk+1, where the
function a tells us how much to alter the usual fluctuations of the ordinary walk (based
on X ’s), depending on where the diffusion Y is at time k. For instance, by sure that you
understand that if the function a(x) := 2 for all x, then the diffusion Y is just a simple
walk times 2; i.e., a simple walk that fluctuates twice as wildly. We can add a drift term
to this diffusion as well to model the effect of a push. That is, Yk+1 = a(Yk)Xk+1 + b(Yk).

(2.2) Itô Diffusions in Continuous Time. Just as Brownian motion was obtained as
limits of random walks, we can proceed to construct continuous-time diffusions by discrete-
time approximations. Here is the simulation algorithm; it will construct an Itô diffusion
in continuous time whose fluctuation are guided by some function a and whose drift is by
some function b:

(2.3) Y (0) := 0, Y

(
k + 1

n

)
:= Y

(
k

n

)
+ a

(
Y

(
k

n

))
· Xk+1√

n
+ b

(
Y

(
k

n

))
· 1
n

.
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The 1/
√

n term is just central limit theorem scaling as in Donsker’s theorem for Brownian
motion. Indeed, if a(x) := 1 and b(x) := 0, the process Y is Brownian motion. Another
way to write this is to bring the term Y (k/n) to the left-hand side to convince yourselves
that Y “solves” the following “stochastic differential equation:”

(2.4) dY (t) = a(Y (t))dW (t) + b(Y (t))dt,

where W is Brownian motion.

(2.5) Warning. The above stochastic differential equation has very different properties
(as well as a different meaning) than ordinary differential equations of the calculus of real
functions. For instance, Paley, Wiener, and Zygmund proved that with probability one, the
Brownian motion W is nowhere differentiable, so that dW (t) is not the usual “differential.”
[See R. E. A. C. Paley, N. Wiener, and A. Zygmund (1933). Notes on random functions,
Math. Zeit., 37, 647–668.] The difference is best seen when trying to understand Itô’s
formula that is next.

(2.6) Itô’s Formula. If you consider two differentiable functions f and g, then by the
chain rule of the calculus of real functions,

(2.7) (f(g))′ = f ′(g)× g′.

If g is the random function W instead (i.e., Brownian motion), it is nowhere differentiable
(cf. 2.6 above), and hence W ′(s) does not exist at any s. Itô’s formula tells us what
happens to chain rule in this case: For a twice continuously differentiable function f ,

(2.8) f(W (t)) = f(W (0)) +
∫ t

0

f ′(W (s)) dW (s) +
1
2

∫ t

0

f ′′(W (s)) ds,

where the “stochastic integral”
∫

f ′dW needs to be defined. It can be shown to satisfy the
following natural approximation, but the choice of the so-called left-point rule is absolutely
essential now:

(2.9)
∫ t

0

g(W (s)) dW (s) = lim
n→∞

n∑
j=0

g

(
W

(
jt

n

))
×

{
W

(
(j + 1)t

n

)
−W

(
jt

n

)}
,

where “limit” needs to be understood in some carefully stated sense. What is important
about this approximation is that it shows quite clearly that the stochastic integral will
have mean zero always! Indeed, note that g(W (jt/n)) and {W ((j + 1)t/n)−W (jt/n) are
independent thanks to Einstein’s predicate (1.5c, Lecture 8). Now elementary probability
theory tells us that whenever ξ and ζ are independent random variables, then E{ξζ} =
E{ξ}E{ζ}. Since E{W (t) − W (s)} = 0, this shows that stochastic integrals are always
mean-zero processes; i.e.,

(2.10) E

{∫ t

0

g(W (s)) dW (s)
}

= 0.
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(2.11) Itô’s Formula for the Diffusion Y. The diffusion Y also has an Itô formula; it
is the following more complicated one:

(2.12) f(Y (t)) = f(Y (0)) +
∫ t

0

f ′(Y (s)) dY (s) +
1
2

∫ t

0

f ′′(Y (s)) [a(Y (s)]2 ds.

Plug the value of dY (s) from (2.4) and we obtain the Itô formula,

(2.13)
f(Y (t)) =f(Y (0)) +

∫ t

0

f ′(Y (s))a(Y (s)) dW (s) +
∫ t

0

f ′(Y (s))b(Y (s)) ds

+
1
2

∫ t

0

f ′′(Y (s)) [a(Y (s)]2 ds.

The point is that this formulation has a stochastic integral in terms of dW which we have
already seen is mean-zero.

(2.14) Existence of the Diffusion. Unfortunately, the simulation algorithm of (2.3) will
produce something that yields nonsense unless the functions a and b are “nice.” By this
I mean that the Itô equation (2.4) will have solutions only if a and b are nice. One such
condition is that a′ and b′ exist and are bounded functions. Under this condition, with
probability one, (2.4) can be shown to have a unique solution process Y .
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LECTURE 10: ITÔ’s FORMULA AND THE WRIGHT–FISCHER MODEL

§1. ITÔ’s FORMULA

(1.1) An Itô Formula. Suppose Y solves the stochastic differential equation,

(1.2) dY (t) = a(Y (t))dW (t) + b(Y (t))dt,

and recall from (2.11) of Lecture 10 that for any nice function f ,

(1.3) f(Y (t)) = f(Y (0)) +
∫ t

0

f ′(Y (s))a(Y (s)) dW (s) +
1
2

∫ t

0

f ′′(Y (s)) [a(Y (s))]2 ds.

From this, and a few lines, one can show the following.

(1.4) Probabilistic Interpretation of a and b. As h ↓ 0,

E

{
Y (t + h)− Y (t)

h

∣∣∣∣ Y (t) = x

}
→ b(Y (t))

E

{[
Y (t + h)− Y (t)

]2
h

∣∣∣∣ Y (t) = x

}
→ a(Y (t)).

This gives further credance to our intuition that a(x) determines the strength of the fluc-
tuation if Y enters the value x, and b(x) determines the drift (or push) if Y enters b(x).

§2. THE WRIGHT–FISCHER GENE FREQUENCY MODEL

(2.1) A Haploid Model. The haploid model is the simplest model for asexual gene
reproduction; here, there are no genetic effects due to genetic mutation or selection for a
specific gene.

Let 2N denote a fixed population size comprised of two types of individuals (more
aptly, genes): Type A and Type B. If the parent consists of i type-A individuals (and hence
2N − i type-B), then in the next generation, each gene becomes type-A with probability

i
2N

and type-B with the remaining probability 1− i
2N

. All genes follow this prescription
independently, and this works to construct a random process that evolves from generation
to generation.

Let Xn := the number of type-A individuals in generation n. Then, given that we
have simulated the process until time (n− 1) and observed Xn−1 = j, we have:

(2.2) P{Xn = j |Xn−1 = i} =
(

2N

j

) (
i

2N

)j (
1− i

2N

)2N−j

, ∀j = 0, . . . , 2N.

A question arises that is the genetics’ analogue of the maze-problem from Robert Thorn’s
talk:
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(2.3) Question. What is the probability that starting with i type-A individuals for some
i = 0, . . . , 2N , Xn is eventually equal to 0? Can you answer this by simulation when N is
large? ♣
(2.4) A Diffusion-Approximation. Consider the entire random process Xk

2N where
k = 1, . . . , 2N , and N is fixed but large. Then, one can show that when N is large,
this process looks like the solution to the following stochastic differential equation (called
Feller’s equation) run until time one:

(2.5) d(Y (t)) = Y (t)
{
1− Y (t)

}
dW (t).

Thinking of this SDE as we did in (2.3, Lecture 10), you should convince yourself that
when the solution Y hits 0 or 1, it sticks there forever.

(2.6) An Argument to Convince you of (2.5). This is not a rigorous argument, but
its intuitively convincing: Based on the conditional-binomial formula (2.2) above, and a
few calculations involving the means and variances of binomials, we have the following: As
h → 0, and for each 0 ≤ t ≤ 1,

(2.7)

E

{
X2N(t+ 1

N ) −X2Nt

2N

∣∣∣∣X2Nt = i

}
= 0 → 0

E

{[
X2N(t+ 1

N ) −X2Nt

]2
2N

∣∣∣∣X2Nt = i

}
=

1
2N

(
i

2N

) (
1− i

N

)
.

So let h = 1
2N and consider the process YN (t) := 1

2N Xb2Ntc to “see” that YN should look
like Y in light of (1.4). ♣
(2.9) Simulation Project. Simulate the Wright–Fischer haploid model, as well as Feller’s
diffusion, and “compare.” You should think hard about what this means, since we are
talking about different random processes. ♣
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LECTURE 11: PROBABILISTIC SOLUTION TO ELLIPTIC PDE’S

§1. ANOTHER ITÔ’s FORMULA

We now explore some of the many connections between Brownian motion and second-
order partial differential equations (PDE’s). To start, we need a variant of Itô’s formula.
This one is an Itô-type development for a function f(x, t) of space-time (x, t); the “space
variable” is x ∈ Rd, and the “time variable” is t ≥ 0.

Throughout, W denotes d-dimensional Brownian motion.

(1.1) Another Itô’s Formula. For any T ≥ t ≥ 0,

(1.2)

f(W (t), T − t) = f(W (0), t) +
d∑

j=1

∫ T

0

∂

∂xj
f(W (s), T − s) dWj(s)

+
d∑

j=1

∫ T

0

1
2
∆f(W (s), T − s) ds +

∫ T

0

∂

∂t
f(W (s), T − s) ds,

where ∆f(x, t) :=
∑d

j=1
∂2

∂x2
j
f(x, t) is the Laplacian of f in the “space variable” x ∈ Rd.

§2. THE HEAT EQUATION

The heat equation is the equation that governs the flow of heat in a nice medium. If
u(x, t) denotes the amount of heat at place x ∈ Rd at time t, then it states that u is “the
continuous solution” to the following:

(2.1)
∂

∂t
u(x, t) =

1
2
∆u(x, t), t ≥ 0, x ∈ Rd,

u(x, 0) = f(x), x ∈ Rd,

where f is the function that tells us the initial amount of heat introduced at each point
x ∈ Rd in space, and u tells us how this heat propagates (i.e., cooling). The number
1
2 is chosen for the sake of convenience and can be replaced by any other number c; in
general, this is the so-called thermal conductivity of the medium that is being heated, and
can be obtained by a change of variables of type v(x, t) := u(

√
cx, t). Indeed, note that

∂
∂tv(x, t) = ∂

∂tu(ax, t) and ∂2

∂x2
j
v(x, t) = c ∂2

∂x2
j
u(ax, t). So that v solves

(2.2)
∂

∂t
v(x, t) = c∆v(x, t), t ≥ 0, x ∈ Rd,

v(x, 0) = f(x/
√

c), x ∈ Rd.

So we might as well study (2.1) when the thermal conductivity is 1
2 .
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(2.3) The Probabilistic Solution. The solution to (2.2) can be written as follows,
where W denotes d-dimensional Brownian motion: u(x, T ) = Ex{f(W (T ))}, where Ex

denotes the expectation relative to Brownian motion started at x ∈ Rd.

(2.4) Itô’s Formula Once More. We can deduce (2.3) from (1.2) with T := t as follows:

(2.5)
u(W (T ), 0) = u(W (0), T ) +

∫ T

0

− ∂

∂t
u(T − s, W (s)) ds

+
∫ T

0

1
2
∆u(T − s, W (s)) ds + stoch. integral.

All that we care about is that the expected value of the stochastic integral is zero; cf. the
simulation approximation (2.9, Lecture 9) to convince yourselves of this. Moreover, the
other two integrals are equal to

∫ T

0

(
1
2∆u− ∂

∂tu
)

= 0, since u solves the heat equation
(2.1). So, we can take the expectation of (2.5) conditional on W (0) = x (i.e., start your
Brownian motion at x ∈ Rd) to get Ex{u(W (T ), 0)} = u(x, T ). Since u(y, 0) = f(y) for
all y, this proves (2.4). ♣

(2.6) Project. How would you simulate Ex{f(W (T ))}? (Hint: Kolmogorov’s strong law
of large number (0.1, Lecture 2).)

(2.7) THE DIRICHLET PROBLEM. If you put a unit of charge in the middle of
a sphere, it charges the outer shell of the sphere and the charge distribution is uniform.
More generally, if D is a nice domain in Rd (the analogue of the sphere), and if f is the
charge distribution on the boundary (or shell) ∂D of D, then we have a charge distribution
u(x) at x that is given by the Dirichlet problem:

(2.8)
∆u(x) = 0 x ∈ D i.e., no-flux inside

u = f, on ∂D.

The probabilistic solution, using Brownian motion, is u(x) := Ex{f(W (τD))}, where W
denotes Brownian motion started at x and in d dimensions, and τD is the first time W
leaves D. How would you simulate this?
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